

XC660D VERBUNDREGLER

(Softwareversion 3.0)

	INHALT	
<u>1.</u>	SOFTWAREVERSION	4
_	ALL OFMEINE WARNINGEN	
2. 2.0	ALLGEMEINE WARNUNGEN VOR DER BENUTZUNG BITE LESTEN	4
2.0	SICHERHEITSHINWEISE	
_		_
<u>3.</u>	ALLGEMEINE BESCHREIBUNG	<u>5</u>
<u>4.</u>	ZUBEHÖR DES XC660D REGLERS	5
1. 4.0	PP07, PP11, PP30 PP50: 4÷20MA DRUCKFÜHLER	
4.1	ROHRANLEGEFÜHLER	
_	VERKARELLING LIND COLLAL TRUER	^
5. 5.1	VERKABELUNG UND SCHALTBILD ALLGEMEINE WARNUNGEN	<u>6</u>
5.2	SCHALTBILD	
5.3	FÜHLER	
5.4	LASTEN	
5.5	POTENTIALFREIE DIGITALEINGÄNGE	
5.6	VERBUNDANLAGE MIT EINEM SAUGGASKREISLAUF: HOCH- UND NIEDERDRUCKSCHALTER	
5.7	VERBUNDANLAGE MIT ZWEI SAUGGASKREISLÄUFEN: HOCH- UND NIEDERDRUCKSCHALTER	
5.8 5.9	ANALOGE AUSGÄNGE ÜBERWACHUNGSSYSTEM - RS485 - MODBUS-PROTOKOLL	
5.5	OBERWACHOROGOTOTEW ROTOS WODDOOT ROTOROLE	
<u>6.</u>	MONTAGE	10
7	INBETRIEBNAHME	10
7. 7.1	DEN KÄLTEMITTELTYP KONFIGURIEREN	10
7.1 7.2	DIE MESSBEREICHE DER DRUCKFÜHLER EINSTELLEN	
	DIE WEGGEREIGNE DER DROCK GNEEK EINGTEELEN	
<u>8.</u>	ANZEIGE UND TASTEN	11
8.1	Anzeige	
8.2	TASTATUR	
8.3	SYMBOLE	
<u>9.</u>	DIE SOLLWERTE	13
9.1	DIE AKTIVEN SOLLWERTE ANSEHEN	
9.2	DIE AKTIVEN SOLLWERTE ÄNDERN	
40	INFORMATIONEMENIÏ	4.4
<u> 10.</u>	INFORMATIONSMENÜ	14
<u>11.</u>	EINSTELLUNGEN DER PARAMETER	14
11.0	IN DIE ERSTE PROGRAMMIERUNGSEBENE ("PR1") GELANGEN	
11.1	In die zweite Programmierungsebene ("Pr2") gelangen	
40	WARTING CMODILE DER LACTEN	4 5
12. 12.0	WARTUNGSMODUS DER LASTEN EINE LAST IN IHREN WARTUNGSMODUS SETZEN	<u> 15</u>
ı∠.U	LINE LAST IN IMKEN WAKTUNGSMUDUS SETZEN	

12.1 12.2	ANZEIGE MIT LASTEN IM WARTUNGSMODUS STEUERUNGSLOGIK MIT LASTEN IM WARTUNGSMODUS	
<u>13.</u>	BETRIEBSSTUNDEN DER LASTEN	16
13.0 13.1	DIE BETRIEBSSTUNDEN DER LASTEN ANSEHEN DIE BETRIEBSSTUNDEN DER LASTEN ZURÜCKSETZEN	
<u>14.</u>	ALARMMENÜ	17
14.0 14.1	DIE ALARME ANSEHEN DIE ALARME LÖSCHEN	
<u>15.</u>	TASTATURSPERRUNG	17
15.0 15.1	SPERRUNG ENTSPERRUNG	
<u>16.</u>	PARAMETERSPEICHERKARTE "HOTKEY"	17
16.0 16.1	ALLE PARAMETER IN DIE HOTKEY HOCHLADEN (UPLOAD) ALLE PARAMETER IN DEN REGLER HERUNTERLADEN (DOWNLOAD)	
<u>17.</u>	PARAMETER	18
17.0 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 17.11 17.12 17.13 18.0 18.1 18.2 18.3	Analoger Ausgang 2	30
<u>19.</u>	VERFLÜSSIGUNGSGEBLÄSE	32
19.0	VERFLÜSSIGUNGSGEBLÄSE	
20. 20.0 20.1	ALARME ALARMLISTE QUITTIERUNG DES ALARMSUMMERS	34
<u>21.</u>	TECHNISCHE DATEN	39
<u>22.</u>	PARAMETERLISTE	39

1. SOFTWAREVERSION

 Beachten Sie die Softwareversion, die auf dem Etikett an der Seite des Reglers geschrieben steht.

 Diese Anleitung gilt für die Version 3.0: falls Sie eine andere Softwareversion haben, kontaktieren Sie die Firma Cool Italia GmbH um die richtige Anleitung zu bekommen.

2. ALLGEMEINE WARNUNGEN

2.0 Vor der Benutzung bitte lesen

- Diese Bedienungsanleitung ist ein Teil des Reglers und sollte in dessen N\u00e4he bleiben.
- Das Gerät darf nicht außerhalb der Anwendungen, die diese Anleitung beschreibt, verwendet werden.
- Das Gerät darf nicht als Sicherheitssystem verwendet werden.
- Überprüfen Sie die Betriebsbereiche bevor Sie weitergehen.
- Die Firma Dixell srl behält sich das Recht, das Produkt zu modifizieren, vor, solange dessen Merkmale und Funktionen gleich bleiben.
- Die Firma Cool Italia GmbH behält sich das Recht, die Anleitung zu aktualisieren, vor.

2.1 Sicherheitshinweise

- Überprüfen Sie, ob die Spannungsversorgung passt, bevor Sie den Regler einschalten.
- Schützen Sie den Regler gegen Feuchtigkeit und Nässe: verwenden Sie ihn nur innerhalb seiner Betriebsbereiche und vermeiden Sie schnelle Temperaturänderungen und hohe Luftfeuchtigkeit.
- Vorsicht: vor jeder Wartungsarbeit schalten Sie die Spannungsversorgung aus.
- Das Gehäuse des Reglers darf nicht aufgemacht werden.
- Falls der Regler defekt ist, rufen Sie die Firma Cool Italia GmbH, deren Adresse Sie auf der letzten Seite dieser Anleitung finden können, an, um die Rücksendung zu organisieren.
- Die maximale Stromstärke berücksichtigen, die für jedes Relais angewendet werden kann.
- Vergewissern Sie sich, dass die Strom- und Signalleitungen getrennt installiert wurden.
- Die Fühler sind so anzuordnen, dass sie für den Endnutzer nicht erreichbar sind.
- Wenn die Anwendung große induktiven Lasten enthalt, könnte es sich lohnen kapazitive Filter parallel zu den Lasten einzubinden.

3. ALLGEMEINE BESCHREIBUNG

Die XC600D Reglerfamilie ist gedacht um die gleichzeitige Steuerung von Verdichtern und Gebläsen, sowohl einer normalen als auch einer komplexen Verbundanlage einfach realisieren zu können.

Die Verdichter dürfen damit stufig, Schraubenverdichter, Scroll™ oder Stream™ sein. Es gibt auch die Möglichkeit, zwei Saugkreisläufe mit gemeinsamer Verflüssigung zu steuern.

Die Steuerungslogik mit neutraler Zone hängt von der Temperatur oder vom Druck in der Saugleitung für die Verdichter und in der Heißgasleitung für die Gebläse ab.

Durch einen optimierten Rotationsalgorithmus können die Betriebsstunden der Lasten auf einem Gleichgewicht gehalten werden, um den Verschleiß der Lasten damit anzugleichen.

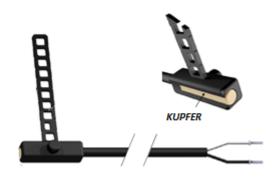
Jede Last des Reglers hat ihren potentialfreien Schutzkontakt, dessen Aktivierung schaltet den Ausgang der Last sofort aus.

Zur optimalen Sicherheit der gesamten Anlage gibt's auch die direkten 230 Vac Kontakte für die Hoch- und Niederdruckschalter, welche die ganze Verbundanlage im Notfall sofort ausschalten.

Das Display zeigt alle Informationen des Systems an: die Temperatur- oder Druckwerte, die Betriebs- und Wartungszustände der Lasten und die aktiven Alarme.

Der Regler kann auch, selbstverständlich in Abhängigkeit vom Kältemitteltyp, die Temperaturen in der Saug- und Heißgasleitung von deren gemessenen Druckwerten berechnen.

Mit der HOTKEY Speicherkarte können die ganzen Parametereinstellungen einfach gespeichert, heruntergeladen und zwischen verschiedenen Geräten übertragen werden.


Das Gerät enthält eine RS485 Kommunikationsschnittstelle und kommuniziert mit dem standardisierten ModBus Protokoll, deswegen ist die Verbindung mit einem Gebäudeleitungsoder Überwachungssystem (z. B.: Dixell Xweb500) immer einfach möglich.

4. ZUBEHÖR DES XC660D REGLERS

4.0 PP07, PP11, PP30 PP50: 4 ÷ 20 mA Dr	Oruckfühler
---	-------------

NAME	KABELLÄNGE	MESSBEREICH	DIXELL BESTELLCODE
PP07	2,0 m	-0,5 ÷ 7 bar rel	BE009302 00
PP11	2,0 m	-0,5 ÷ 11 bar rel	BE009302 07
PP30	2,0 m	0 ÷ 30 bar abs	BE009302 04
PP50	2,0 m	0 ÷ 50 bar abs	BE009002 05

4.1 Rohranlegefühler

Ein Temperaturfühler am Anfang der Heißgasleitung kann, zum Beispiel, die Verdichtungsendtemperatur eines

Verdichtungsendtemperatur eines Scroll™ Verdichters messen.

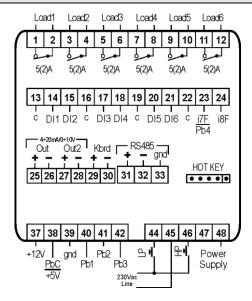
BN609001 52 1.5MT NTC Temperaturfühler

Messbereich: -40 +110 °C

Kabellänge 1,5 m

Dixell Bestellcode BN609001 52

5. VERKABELUNG UND SCHALTBILD


5.0 Allgemeine Warnungen

Bevor Sie die Kabel anschließen, vergewissern Sie sich, dass die Spannungsversorgung stimmt.

Halten Sie die Niederspannungskabel (Fühler, potentialfreie Eingänge, RS485, usw.) und die Hochspannungskabel (Spannungsversorgung, Lasten, 230 Vac Eingänge) voneinander getrennt.

Beachten Sie bitte, dass jeder Ausgang nicht mehr als 5 A ohmscher Last belastet wird, falls der Strom größer ist, verwenden Sie einen externen Leistungsschütz.

5.1 Schaltbild

5.2 Fühler

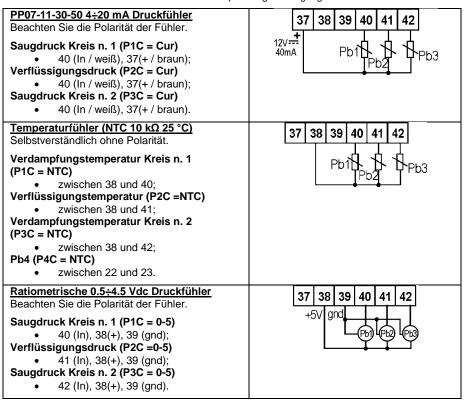
5.2.1 Allgemeine Warnungen

Druckfühler (4 ÷ 20 mA und 0.5÷4.5 Vdc):

die Anschlusspolarität soll immer respektiert werden.

Falls Sie Aderendhülsen am Ende der Fühlerkabel verwenden, beachten Sie bitte, dass diese Anschlüsse sowohl Kurzschlüsse als auch Hochfrequenzstörungen teilweise verursachen könnten.

Um Induktionsstörungen zu vermeiden, können Sie geschirmte Fühlerkabel mit Erdung benutzen.


Temperaturfühler: die Temperaturfühler sollen nicht direkt unter einer Luftströmung platziert werden, um ungenaue Messungen zu vermeiden.

5.2.2 Fühleranschlüsse

Halten Sie die Fühlerkabel entfernt von den Stromkabeln und verwenden Sie nur geschirmte Kabel, falls Sie die Fühler verlängern sollen.


ANMERKUNG 1: die Klemme 38 ist die gemeinsame Leitung der ohmschen Temperaturfühler. **ANMERKUNG 2:** die Klemme 37 ist eine 12 Vdc Spannungsversorgung für die 4÷20 mA Druckfühler.

5.3 Lasten

Der XC660D enthält 6 Relais-Ausgänge, wie im Bild rechts, und deren Funktionen hängen von den Parametern oA1÷oA6 ab.

Je nach Lasten sollen diese Ausgänge einfach direkt oder durch Leistungsschütze, falls der entsprechende Laststrom größer als 5 A ist, verwendet werden.

5.4 Potentialfreie Digitaleingänge

5.4.1 Sicherheitseingänge der Lasten

Jede Last hat ihren potentialfreien Sicherheitseingang, woran deren eigene Sicherheitskette angeschlossen werden soll: sobald dieser Eingang aktiviert wird, schaltet der Regler die entsprechende Last sofort aus und solang dieser Eingang aktiv bleibt, darf die entsprechende Last nicht mehr eingeschaltet werden.

LAST	KLEMMEN	EINGANG	KLEMMEN	VERDRAHTUNGEN
1	1-2	DI1	13-14	13 14 15 16 17 18 19 20 21
2	3-4	DI2	13-15	
3	5-6	DI3	16-17	
4	7-8	DI4	16-18	
5	9-10	DI5	16-18	
6	11-12	DI6	16-18	

5.4.2 Konfigurierbare Digitaleingänge

Der XC660D besitzt zwei konfigurierbare digitale Eingänge wovon einer als vierter Fühler verwendet werden kann. Deren Funktionen hängen von den Parametern iF07 und iF08 ab: Sie können unter anderem zur Überwachung des Niveau des Kältemittels oder um den Energiespar- oder Leisemodus mit einem anderen Gerät ein- und auszuschalten verwendet werden.

EINGANG	KLEMMEN	PARAMETER	VERDRAHTUNGEN
i1F/Pb4	22-23 (i1F/Pb4)	iF07: Funktion iP07: Polarität	22 23 24
i2F	22-24 (i2F)	iF08: Funktion iP08: Polarität	

5.5 Verbundanlage mit einem Sauggaskreislauf: Hochund Niederdruckschalter

ANMERKUNG: die einzigen Digitaleingänge, die mit derselben Versorgungsspannung des Reglers funktionieren, sind die Hoch- und Niederdruckschalter an den Klemmen 44-45-46.

Der **Niederdruckschalter** wird an den Klemmen 44 (L) und 45 (N) angeschlossen. Der **Hochdruckschalter** wird an den Klemmen 45 (N) und 46 (L) angeschlossen.

Die Polarität dieser Eingänge ist softwareseitig einstellbar.

5.6 Verbundanlage mit zwei Saugkreisläufen: Hochund Niederdruckschalter

ANMERKUNG: die einzigen Digitaleingänge, die mit derselben Versorgungsspannung des Reglers funktionieren, sind die Hoch- und Niederdruckschalter an den Klemmen 44-45-46.

Der **Niederdruckschalter des ersten Sauggaskreislaufes** wird an den Klemmen 44 (L) und 45 (N) angeschlossen.

Der Hochdruckschalter wird an den Klemmen 45 (N) und 46 (L) angeschlossen.

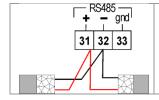
Die Polarität dieser Eingänge ist softwareseitig einstellbar.

5.6.1 Niederdruckschalter des zweiten Sauggaskreislaufes

Der Niederdruckschalter des zweiten Sauggaskreislaufes ist ein **potentialfreier Kontakt**. Um ihn anzuschließen:

- soll der Parameter iF08 auf "LP2" eingestellt werden;
- schließen Sie den Druckschalter an den potentialfreien Klemmen 22-24 an.

5.7 Analogausgänge


Der Regler besitzt zwei analoge Ausgänge, die durch Parametereinstellungen konfiguriert werden können.

	Terminals	Related parameter	
Analogausgang 1 25(+) – 26(-) AOC: Signaltyp (4-20 mA / 0-10 V)		AOC: Signaltyp (4-20 mA / 0-10 V)	
		AOF: Ausgangsfunktion	
Analogausgang 2 27(+) – 28(-)		2AOC: Signaltyp (4-20 mA / 0-10 V)	
		2AOF: Ausgangsfunktion	

5.8 Überwachungssystem - RS485 - ModBus-Protokoll

Das Gerät kann mit einem Überwachungssystem (z.B. Dixell XWEB500) kommunizieren, wofür der Parameter **Adr** als serielle Adresse verwendet wird.

In derselben Netzverbindung darf die serielle Adresse nicht doppet auftauchen.

- 1) Klemmen 31(+) und 32(-).
- Verwenden Sie geschirmte Kabel, z.B. Belden® 8762 oder 8772 oder CAT5 Kabel.
- 3) Maximale Leitungslänge 1 km.
- 4) Der Schirm des Kabels sollte weder am GND Klemme des Reglers, noch am Schutzleiter angeschlossen werden.

6. Montage

Der Regler soll auf DIN-Schiene und ausschließlich in einem Schaltkasten montiert werden. Der Temperaturbetriebsbereich ist -10 ÷ 60 °C.

Vermeiden Sie Montageorte mit starken Schwingungen, korrodierenden Gasen oder außerordentlicher Verschmutzung, das Gleiche gilt für jeden Fühler.

Gewährleisten Sie auch, dass die Luft um den Regler zirkulieren kann.

7. Inbetriebnahme

Bei der Inbetriebnahme sollen Sie zuerst:

- Den Kältemitteltyp konfigurieren;
- 2. Die Messbereiche der Druckfühler einstellen.

7.0 Den Kältemitteltyp konfigurieren

Das Kältemittel stellen Sie mit dem Parameter "FtyP" ein, damit der Regler den gemessenen Druck in die entsprechende Temperatur umwandeln kann.

Die Werkseinstellung ist R404 ("FtyP"=404).

Falls Sie ein anderes Kältemittel verwenden, folgen Sie den folgenden Schritten:

- Halten Sie gleichzeitig die SET-Taste und den Pfeil nach unten für drei Sekunden gedrückt, um in die Programmierungsebene zu gelangen;
- 2. Suchen Sie den Parameter Pr2 und geben Sie das Kennwort 3-2-1-0 ein;
- 3. Suchen Sie den Parameter "FtyP" (Gastyp);
- 4. Drücken Sie die **SET**-Taste, der angezeichnete Wert wird blinken;
- Mit den Pfeilen nach oben und nach unten wählen Sie das richtige Gas aus: r22 = R22, r404 = R404A, 407A = R407A, 407C = R407C, 407F = R407F, 410 = R410, 507 = R507, 134 = 134. CO2 = CO2.
- Drücken Sie wieder die SET-Taste und der gerade ausgewählte Wert wird gespeichert.

Um das Menü zu verlassen, drücken Sie gleichzeitig die SET-Taste und den Pfeil nach oben oder warten Sie einfach 30 Sekunden ohne Eingaben in den Regler.

ANMERKUNG: der angezeigte Wert wird gespeichert auch wenn man die Ebene nach Zeit automatisch verlässt.

7.1 Die Messbereiche der Druckfühler einstellen

Die Geräte, die ein "F" am Ende des Bestellungscodes haben (z.B. XC660D – xxxxF), sind mit den fonlgenden Messbereichen bereits konfiguriert:

- Saugdruckfühler (z.B. Dixell PP11FE) → -0.5 ÷ 11.0 bar (relativer Druck)
- Verflüssigungsdruckfühler (z.B. Dixell PP30FE) → 0.0 ÷ 30.0 bar (relativer Druck)

Falls Ihre Fühler andere Messbereiche haben:

- Für den Saugdruckfühler
 - Parameter PA04 (Anfangsdruckwert des Messbereiches);
 - Parameter PA20 (Enddruckwert des Messbereiches):
- Für den Verflüssigungsdruckfühler
 - Parameter FA04 (Anfangsdruckwert des Messbereiches);
 - Parameter FA20 (Enddruckwert des Messbereiches).

Den richtigen Messbereich jedes Druckfühlers finden Sie auf dem Fühlerkörper oder in dessen Bedienungsanleitung.

Vorgehensweise:

- Halten Sie gleichzeitig die SET-Taste und den Pfeil nach unten für drei Sekunden gedrückt, um in die Programmierungsebene zu gelangen;
- 2. Suchen Sie den Parameter Pr2 und geben Sie das Kennwort 3-2-1-0 ein;
- Suchen Sie den Parameter PA04:
- 4. Drücken Sie die **SET**-Taste, der angezeichnete Wert wird blinken;
- 5. Mit den Pfeilen nach oben und nach unten geben Sie den richtigen Wert ein;
- Drücken Sie wieder die SET-Taste und der gerade ausgewählte Wert wird gespeichert.
- 7. Führen Sie das Gleiche mit dem Parameter PA20 durch.

Das Gleiche führen Sie mit dem Druckfühler der Verflüssigung, falls es einen gibt, dessen Messbereichsparameter **FA04** und **FA20** heißen.

Um das Menü zu verlassen, drücken Sie gleichzeitig **die SET-Taste und den Pfeil nach oben** oder warten Sie einfach 30 Sekunden ohne weitere Eingaben in den Regler.

ANMERKUNG: der angezeigte neue Wert wird gespeichert auch wenn man die Ebene nach Zeit automatisch verlässt.

8. ANZEIGE UND TASTEN

8.0 Anzeige

OBERES DISPLAY	UNTERES DISPLAY	Icons
Saugdruck oder	Verflüssigungsdruck oder	 Zustände der Lasten
Temperatur in der	Temperatur am Verflüssiger	 Messeinheiten
Saugleitung		 Alarme und Meldungen

8.1 Tastatur

SET (Sollwert-Taste)

- In der Hauptanzeige
 - Einmal drücken → die Sollwerte anzeigen;
 - Gedrückt Halten → die Sollwerte einstellen;
- Im Programmierungsmenü
 - Einmal drücken → Werte ändern oder Änderungen speichern;
- Im Alarmmenü
 - o Gedrückt Halten → der angezeichnete Alarm wird gelöscht.

UP (Pfeil nach oben)

- In der Hauptanzeige
 - Einmal drücken → ins Informationsmenü gelangen;

- In jedem Menü
 - ⊙ Einmal drücken → es blättert die Menüelemente (z.B. Parameter) durch oder erhöht den Wert eines Parameters:
- Mit eingesteckter Parameterspeicherkarte (HotKey)
 - Die Übertragung der Parameter in die Speicherkarte fängt an.

DOWN (Pfeil nach unten)

- In jedem Menü
 - ⊙ Einmal drücken → es blättert die Menüelemente (z.B. Parameter) durch oder reduziert den Wert eines Parameters

Manuelle Störungsquittierung der Lasten

 Halten Sie diese Taste gedrückt um die von den digitalen Sicherheitseingängen augeschalteten Lasten wieder zu starten.

Wartung und Betriebsstunden

- In der Hauptanzeige
 - o Einmal drücken → die Betriebsstunden der <lasten werden angezeigt
 - ⊙ Gedrückt halten → Sie gelangen ins Wartungsmenü

Alarmmenü

Einmal drücken → Gelangen Sie ins Alarmmenü

TASTENKOMBINATIONEN

- Beide Pfeile zusammen (gedrückt halten) → Die Tastatur sperren / entsperren.
- SET + Pfeil nach unten (gedrückt halten) → In die Programmierung gelangen.
- SET + Pfeil nach oben (einmal drücken) → Die Programmierung verlassen.

8.2 Symbole

LED		FUNKTION
°C EIN		Temperaturmasseinheit Celsius (°C)
°F	EIN	Temperaturmasseinheit Fahrenheit (°F)
bar	EIN	Druckmasseinheit bar
PSI	EIN	Druckmasseinheit PSI
kPa	EIN	Druckmasseinheit KPA
1	EIN	Die erste Last läuft
1	Blinkt	 Die erste Last wartet auf ihre Einschaltung wegen einer Verzögerung (1 Hz) Die erste Last ist von ihrem Sicherheitseingang abgeschaltet worden (2 Hz) Die erste Last ist im Wartungsmodus (2 Hz)
2	EIN	Zustände der zweiten Last (gleich wie die der ersten Last)
2	Blinkt	Zustande der zweiten Last (gleich wie die der ersten Last)
3	EIN	Zustände der dritten Leet (gleich wie die der ersten Leet)
3	Blinkt	Zustände der dritten Last (gleich wie die der ersten Last)
4	EIN	Zustände der vierten Leet (gleich wie die der ersten Leet)
4	Blinkt	Zustände der vierten Last (gleich wie die der ersten Last)
5	EIN	Zustände der fünften Leet (gleich wie die der ersten Leet)
5	Blinkt	Zustände der fünften Last (gleich wie die der ersten Last)
6	EIN	Zustände der sechsten Last (gleich wie die der ersten Last)

6	Blinkt	
7	EIN	Sie befinden sich bereits im Wartungsmenü
7	Blinkt	Mindestens eine Last ist in ihren Wartungsmodus gelangt
LP	EIN	Der Niederdruckschalter ist aktiv
HP	EIN	Der Hochdruckschalter ist aktiv
1.	EIN	Mindestens ein Alarm ist aktiv
	EIN	Es gibt Alarme im Alarmlog und Sie haben sie alle schon angeschaut
æ	Blinkt	Ein neuer Alarm ist ins Alarmlog eingetragen worden und Sie haben ihn noch nicht angeschaut
※)	EIN	Der Energiesparmodus ist bereits aktiv

9. Die Sollwerte

9.0 Die aktiven Sollwerte ansehen

Falls das Gerät sowohl Verdichter als auch Gebläse steuert, sind deren Sollwerte nacheinander sicht- und änderbar, andernfalls werden Sie nur den Sollwert der Saugseite erreichen können.

Folgen Sie dieser Sequenz:

- 1) Drücken Sie einmal die SET-Taste;
- Das untere Display zeigt "SEtC" (Sollwert des ersten Saugkreises) an, während das obere Display den entsprechenden Wert anzeigt;
- Falls Sie zwei Saugkreisläufe konfiguriert haben, drücken Sie wieder die SET-Taste und der Parameter "StC2" (Sollwert des zweiten Saugkreises) wird angezeigt werden;
- 4) Um den Sollwert der Gebläse anzuschauen, drücken Sie wieder die **SET**-Taste;
- 5) Das untere Display zeigt "SEtF" (Sollwert der Verflüssigung) an, während das obere Display den entsprechenden Wert anzeigt.

Um das Menü zu verlassen, drücken Sie wieder die **SET**-Taste oder warten Sie einfach 30 Sekunden ohne weitere Eingaben in den Regler.

9.1 Die aktiven Sollwerte ändern

ANMERKUNG 1: bevor Sie das erste Mal die gewünschten Sollwerte während der Inbetriebhanme einstellen, überprüfen Sie die Einstellungen des Kältemitteltyps ("**FtyP**") und der Maßeinheit ("**dEU**").

ANMERKUNG 2: ein Sollwert kann nur innerhalb seiner Begrenzugen geändert werden, deswegen sollten Sie die entsprechenden Parameter überprüfen, falls Sie Ihre gewünschten Einstellungen nicht eingeben können.

Folgen Sie dieser Prozedur:

- 1. Halten Sie die **SET**-Taste gedrückt;
- Das untere Display zeigt "SEtC" (Sollwert des ersten Saugkreises) an, während das obere Display den entsprechenden blinkenden Wert anzeigt;
- 3. Stellen Sie mit den Pfeiltasten den gewünschten Wert innerhalb 30 Sekunden ein;
- 4. Um den neuen Sollwert zu speichern und weiterzugehen, drücken Sie die SET-Taste;
- Falls Sie zwei Saugkreisläufe konfiguriert haben, wird der Parameter "StC2" (Sollwert des zweiten Saugkreises) blinkend angezeigt werden;
- 6. Stellen Sie mit den Pfeiltasten den gewünschten Wert innerhalb 30 Sekunden ein;
- 7. Um den neuen Sollwert zu speichern und weiterzugehen, drücken Sie die SET-Taste;
- 8. Das untere Display zeigt "SEtF" (Sollwert der Verflüssigung) an, während das obere Display den entsprechenden blinkenden Wert anzeigt;

- 9. Stellen Sie mit den Pfeiltasten den gewünschten Wert innerhalb 30 Sekunden ein;
- 10. Um den neuen Sollwert zu speichern, drücken Sie die SET-Taste.

Um das Menü zu verlassen, drücken gleichzeitig Sie die SET-Taste und den Pfeil nach oben oder warten Sie einfach 30 Sekunden ohne weitere Eingaben in den Regler.

ANMERKUNG: der angezeichnete neue Wert wird gespeichert auch wenn man die Ebene nach Zeit automatisch verlässt.

10. Informationsmenü

Der Regler zeigt manche praktischen Informationen über den Zustand der Anlage in diesem Menü, welches in der Hauptanzeige mit dem **Pfeil nach oben** aufgerufen wird, an:

- P1t → Temperaturwert des ersten Fühlers (Pb1), falls er verfügbar ist;
- P1P → Druckwert des ersten Fühlers (Pb1), falls er verfügbar ist:
- P2t → Temperaturwert des zweiten Fühlers (Pb2), falls er verfügbar ist;
- P2P → Druckwert des zweiten Fühlers (Pb2), falls er verfügbar ist;
- P3t → Temperaturwert des dritten Fühlers (Pb3), falls er verfügbar ist);
- P3P → Druckwert des dritten Fühlers (Pb3), falls er verfügbar ist;
- P4t → Temperaturwert des vierten Fühlers (Pb4), falls er verfügbar ist;
- LInJ → Zustand des Flüssigkeitseinspritzungausgangs ("On" "OFF"), falls er konfiguriert worden ist;
- SEtd → Wert des dynamischen Sollwerts, falls er konfiguriert worden ist;
- AO1 → Prozentwert des ersten Analogausgangs (Out1);
- AO2 → Prozentwert des zweiten Analogausgangs (Out2);
- **SSC1** → Sollwert der Verdichteroptimierung des ersten Kreislaufes (CRO);
- SSC2 → Sollwert der Verdichteroptimierung des zweiten Kreislaufes (CRO);
- SStF → Sollwert der Verflüssigungsoptimierung.

Um das Menü zu verlassen, drücken Sie gleichzeitig die **SET**-Taste und den **Pfeil nach oben** oder warten Sie einfach 30 Sekunden ohne weitere Eingaben in den Regler.

ANMERKUNG 1: im Informationsmenü finden Sie nur die Werte, die wirklich konfiguriert worden und somit bereits verfügbar sind.

ANMERKUNG 2: das Verhältnis zwischen Temperatur- und Druckwerten eines Fühlers wird je nach Kältemitteltyp in Sekundentakt berechnet.

11. Einstellungen der Parameter

11.0 In die erste Programmierungsebene ("Pr1") gelangen

Um die erste Programmierungsebene zu erreichen, welche den Endkunden zur Verfügung steht, folgen Sie dieser Prozedur:

- 1. Halten Sie gleichzeitig die SET-Taste und den Pfeil nach unten gedrückt;
- 2. Das untere Display zeigt den Namen eines Parameters an, während das obere Display den entsprechenden Wert anzeigt;
- 3. Mit den Pfeilen können Sie die Parameterliste der jetzigen Ebene durchblättern;
- 4. Wenn Sie einen Parameter ändern wollen, drücken Sie die **SET**-Taste und der ensprechende Parameterwert wird blinken;

- 5. Mit den Pfeilen können Sie den neuen Wert einstellen:
- 6. Mit der **SET**-Taste speichern Sie die neue Einstellung und gehen Sie zum nächsten Parameter weiter.

Um das Menü zu verlassen, drücken Sie gleichzeitig die **SET**-Taste und den **Pfeil nach oben** oder warten Sie einfach 30 Sekunden ohne weitere Eingaben in den Regler.

ANMERKUNG: der angezeichnete neue Wert wird gespeichert auch wenn man die Ebene nach Zeit automatisch verlässt.

11.1 In die zweite Programmierungsebene ("Pr2") gelangen

Die erweiterte Parameterliste "Pr2" ist durch ein numerisches Kennwort geschützt.

"Pr2" Kennwort → 3210

Um diese Ebene zu erreichen, welche die wichtigsten Einstellungen enthält und deshalb nur den kompetenten Kunden (z.B. Maschinenhersteller oder Kältefachfirmen) zur Verfügung steht, folgen Sie dieser Sequenz:

- 1. Gelangen Sie zuerst in die erste Ebene (Kapitel 11.0);
- 2. Suchen Sie den "Pr2" Parameter und drücken sie die SET-Taste drauf;
- 3. Der blinkende Wert "0 ---" wird angezeigt:
- 4. Mit den **Pfeilen** geben Sie die Ziffern des Kennworts ein und bestätigen Sie jede Zifferneingabe mit der **SET**-Taste.

Um das Menü zu verlassen, drücken Sie gleichzeitig die **SET**-Taste und den **Pfeil nach oben** oder warten Sie einfach 30 Sekunden ohne weitere Eingaben in den Regler.

ANMERKUNG 1: in dieser zweiten Ebene können Sie sowohl jeden Parameter freigeben, damit er in der ersten Ebene ("Pr1") sichtbar wird, als auch einen bereits sichtbaren Parameter nur in der zweiten Ebene ("Pr2") anzeigen lassen.

Dies steuern Sie mit der SET-Taste, gleichzeitig mit dem Pfeil nach oben einmal gedrückt.

Wenn ein Parameter in der ersten Ebene freigegeben worden ist, merken Sie es, weil der Dezimalpunkt neben dessen Namen beleuchtet ist.

ANMERKUNG 2: der angezeichnete neue Wert wird gespeichert auch wenn man die Ebene nach Zeit automatisch verlässt.

12. Wartungsmodus der Lasten

Wenn eine Last in ihren Wartungsmodus gesetzt wird, wird sie von der Steuerung stillgelegt.

12.0 Eine Last in ihren Wartungsmodus setzen

- 1. Halten Sie die Wartungstaste () gedrückt;
- Der LED der ersten Last leuchtet und das obere Display zeigt den Zustand der Last an ("On" oder "oFF", wo "oFF" den Wartungszustand meint); falls eine Last mehrere digitale Augänge besetzt (z.B. ein mehrstufiger Verdichter), werden die entsprechenden LED alle zusammen leuchten:
- 3. Mit den **Pfeilen** können Sie die Liste der konfigurierten Lasten durchblättern;
- Um einen Wartungszustand zu ändern, drücken Sie die SET-Taste und mit den Pfeilen geben Sie den neuen Zustand ein;
- 5. Mit der **SET**-Taste speichern Sie die neue Einstellung und gehen Sie zur nächsten Last weiter.

Um das Menü zu verlassen, drücken Sie die **Wartungstaste** wieder oder warten Sie einfach 30 Sekunden ohne weitere Eingaben in den Regler.

12.1 Anzeige mit Lasten im Wartungsmodus

Wenn eine Last in ihren Wartungsmodus gesetzt worden ist, blinkt der entsprechende LED mit einer Frequenz von 2 Hz.

12.2 Steuerungslogik mit Lasten im Wartungsmodus

Die Lasten, die in ihren Wartungsmodus gesetzt worden sind, werden von der Steuerung stillgelegt, damit sie weder angefordert noch eingeschaltet werden dürfen, solange bis sie manuell wieder in den normalen Betriebszustand gesetzt werden.

13. Betriebsstunden der Lasten

13.0 Die Betriebsstunden der Lasten ansehen

Der Regler speichert die Betriebsstunden aller Lasten:

- 1. Drücken Sie einmal die WARTUNG/UHR ()-Taste
- 2. Das Display zeigt die Betriebsstunden der ersten Last an
 - Die entsprechende LED leuchtet;
 - Das obere Display zeigt "HUr" an;
 - Das untere Display zeigt die entsprechenden Betriebsstunden an;
- Um die Betriebsstunden der anderen Lasten anzusehen, drücken Sie die Pfeile nach oben oder nach unten.

Um das Menü zu verlassen, drücken Sie die **Wartungstaste** wieder oder warten Sie einfach 30 Sekunden ohne weitere Eingaben in den Regler.

13.1 Die Betriebsstunden der Lasten zurücksetzen

- 1. Gelangen Sie in die Anzeige der Betriebsstunden der gewünschten Last;
- 2. Halten Sie die SET-Taste gedrückt;
- 3. Das untere Display zeigt "rSt" an;
- 4. Sobald "rSt" blinkt, sind die entsprechenden Betriebsstunden zurückgesetzt worden.

Um das Menü zu verlassen, drücken Sie die **Wartungstaste** wieder oder warten Sie einfach 30 Sekunden ohne weitere Eingaben in den Regler.

ANMERKUNG: falls die SET-Taste loslassen bevor "rSt" blinkt, werden die angezeichneten Betriebsstunden nicht zurückgesetzt.

14. Alarmmenü

Der Regler speichert die letzten 10 Alarme, die aufgetreten sind, und deren Dauer. Die Beschreibung der Alarmcodes finden Sie im **Kapitel 22**.

14.0 Die Alarme ansehen

- 1. Drücken Sie die ALARM()-Taste;
- Der letzte Alarmcode wird am oberen Display angezeigt, w\u00e4hrend dessen Nummer im unteren Display lesbar ist;
- Während ein Alarmereignis angezeigt wird, können Sie seine Dauer mit der SET-Taste ansehen:
- Um die anderen Alarmereignisse durchzublättern, drücken Sie die Pfeile nach oben oder nach unten.

14.1 Die Alarme Löschen

- 1. Gehen Sie ins Alarmmenü und rufen Sie das gewünschte Alarmereignis auf
- 2. Halten Sie die SET-Taste gedrückt;
- 3. Sobald das untere Display "rSt" anzeigt, ist der Alarm gelöscht
- 4. Um die ganze Alarmliste zu löschen, halten Sie die SET-Taste 10s gedrückt.

ANMERKUNG: die noch aktiven Alarme können selbstverständlich nicht gelöscht werden.

15. Tastatursperrung

15.0 Sperrung

- Halten Sie beide Pfeile gedrückt;
- Das Display zeigt "POF" an und die Tastatur ist gesperrt, so dass der Benutzer keine Änderung durchführen kann.

15.1 Entsperrung

- Halten Sie beide Pfeile gedrückt;
- 2. Das Display zeigt "PON" an und die Tastatur ist entsperrt.

16. Parameterspeicherkarte "HOTKEY"

16.0 Alle Parameter in den Hotkey hochladen (UPLOAD)

- 1. Stecken Sie die Speicherkarte in den bereits eingeschalteten Regler ein;
- Drücken Sie den Pfeil nach oben;
- 3. Das Display zeigt "uPL" an, während die Übertragung läuft;
- 4. Am Ende der Übertragung zeigt das Display "End" blinkend an;
- 5. Drücken Sie die **SET**-Taste und "**End**" hört auf zu blinken;
- 6. Schalten Sie den Regler aus (stromlos);
- 7. Stecken Sie die Speicherkarte ab;
- 8. Schalten Sie den Regler wieder ein.

ANMERKUNG: falls die Übertragung nicht durchgeführt werden konnte, zeigt das Display "**Err**" an. Überprüfen Sie die Speicherkarte und deren Anschlüsse, dann versuchen Sie es wieder.

16.1 Alle Parameter in den Regler herunterladen (DOWNLOAD)

- 1. Schalten Sie den Regler aus (stromlos);
- 2. Stecken Sie die Speicherkarte ein;
- 3. Schalten Sie den Regler ein;
- 4. Das Display zeigt "uPL" an, während die Übertragung läuft;
- 5. Am Ende der Übertragung zeigt das Display "End" blinkend an;
- 6. Nach 10 Sekunden fängt der Regler mit den neuen Parametern an zu arbeiten;
- 7. Stecken Sie die Speicherkarte ab.

ANMERKUNG: falls die Übertragung nicht durchgeführt werden konnte, zeigt das Display "**Err**" an. Überprüfen Sie die Speicherkarte und deren Anschlüsse, dann versuchen Sie es wieder.

17. Parameter

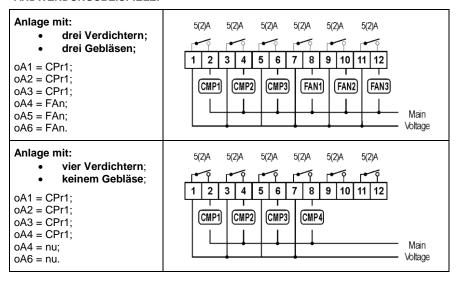
17.0 Anlage und deren Steuerung

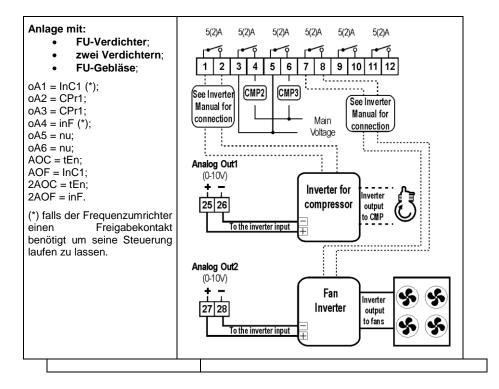
Der Regler wird im Werk voreingestellt um drei Verdichter und drei Gebläse zu steuern.

Die Lasten der Anlage werden durch die Parameter "oA1"-"oA6" konfiguriert:

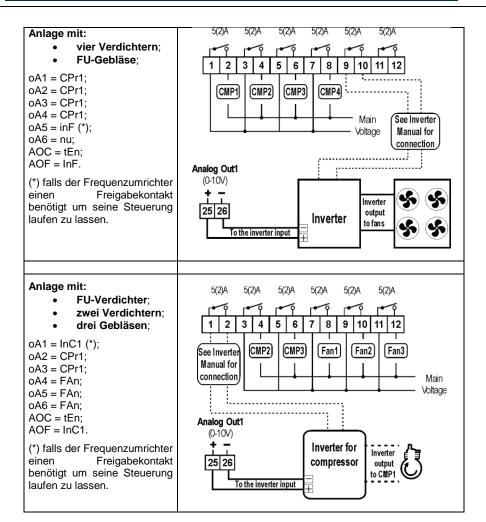
- Nicht verwendet → oAi = nu:
- Verdichter des ersten Kältekreislaufes → oAi = cPr1;
- Verdichter des zweiten Kältekreislaufes → oAi = cPr2;
- Leistungsstufe eines Verdichters → oAi = StP;
- Frequenzgeregelter Verdichter des ersten Kältekreislaufes → oAi = inC1:
- Frequenzgeregelter Verdichter des ersten Kältekreislaufes → oAi = inC2:
- Gebläse → oAi = FAn:
- Frequenzgeregeltes Gebläse → oAi = InF;
- Flüssigkeitseinspritzungsventil → oAi = Lin;
- Alarmausgang → oAi = ALr.

In Abhängigkeit von den Parametern "oA1"÷"oA6" können Sie zwei Anlagentypen konfigurieren:

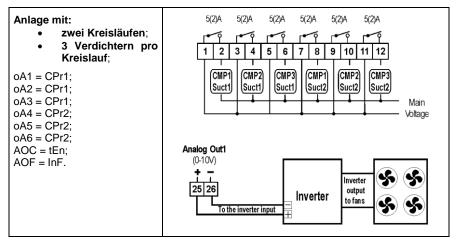

- Nur Sauggaskreislauf → ohne Steuerung der Verflüssigung;
- Komplette Verbundanlage -> Steuerung der Verdichter und der Gebläse.


ANMERKUNGEN:

- wenn Sie Leistungsstufen eines Verdichters verwenden, müssen sie ihrem Verdichter immer nachfolgen (z. B.: oA1 = cPr1, oA2 = StP, oA3 = StP);
- Falls Verdichter mit verschiedenen Leistungen konfiguriert werden ("CtyP" = dPo), dürfen selbstverständlich keine Verdichterstufen eingestellt werden.



ANDWENDUNGSBEISPIELE:



CtyP - Verdichtertyp:

- SPo → Verdichter mit der gleichen Leistung;
- **dPo** → Verdichter mit verschiedenen Leistungen;
- Scr → Schraubenverdichter.

StP - Verdichterstufen:

- **oP** → umgekehrte Polarität, Kontakt geöffnet beim eingeschalteten Ventil;
- cL → direkte Polarität, Kontakt geschlossen beim eingeschalteten Ventil.

PC1÷PC6 – Verdichterleistung 1÷6: verschiedene Leistungen der Verdichter, falls CtyP = dPo; Z. B.: Verdichter 1 = 10 kW → PC1 = 10, Verdichter 2 = 20 kW → PC2 = 20, Verdichter 3 = 30 kW → PC3 = 30;

FtyP - Kältemitteltyp:

- **r22** = R22;
- r404 = R404A:
- **407A** = R407A;
- **407C** = R407C;
- **407C** = R407C;
- **410** = R410A;
- **507** =R507;
- **134** = R134:
- CO2 = CO2 (Kohlendioxid).

Sty - Rotationsschaltung der Verdichter:

- YES → die Verdichter werden je nach Bedarf abwechselnd ein- und ausgeschaltet, damit deren Betriebsstunden ausgeglichen werden;
- no → die Verdichter werden je nach Bedarf nacheinander ein- und ausgeschaltet;

ANMERKUNG 1: ein FU-Verdichter, falls es einen gibt, wird immer als erste Last einund als letzte Last ausgeschaltet.

ANMERKUNG 2: ein FU-Verdichter, falls es einen gibt, kann trotz seiner Sicherheitsverzögerungen je nach Bedarf eingeschaltet werden.

rot - Rotationsschaltung der Gebläse:

- YES → die Gebläse werden je nach Bedarf abwechselnd ein- und ausgeschaltet, damit deren Betriebsstunden ausgeglichen werden;
- no → die Gebläse werden je nach Bedarf nacheinander ein- und ausgeschaltet;

17.1 Fühler

17.1.1 Saugdruckfühler

P1c - Fühlertyp (Pb1):

- nP → kein Fühler:
- Cur → 4÷20 mA Drucktransmitter:
- tEn → 0.5÷4.5 V ratiometrischer Drucktransmitter;
- ntc → NTC 10K 25 °C Temperaturfühler.
- PA04 Untere Messbereichgrenze (Pb1): Druckwert auf 4 mA oder 0,5 V; z. B.: Dixell PP11 (-0,5÷11,0 BAR) → PA04 = -0,5.
- PA20 Obere Messbereichgrenze (Pb1): Druckwert auf 20 mA oder 4,5 V; z. B.: Dixell PP11 (-0,5÷11,0 BAR) → PA20 = 11,0.
- CAL Fühlerkalibrierung (Pb1).

17.1.2 Verflüssigungsfühler

P2c - Fühlertyp (Pb2):

- nP → kein Fühler;
- Cur → 4÷20 mA Drucktransmitter;
- tEn → 0,5÷4,5 V ratiometrischer Drucktransmitter;
- ntc → NTC 10K 25 °C Temperaturfühler.
- FA04 Untere Messbereichgrenze (Pb2): Druckwert auf 4 mA oder 0,5 V; z. B.: Dixell PP30 (0,0÷30,0 BAR) → FA04 = 0,0.
- FA20 Obere Messbereichgrenze (Pb2): Druckwert auf 20 mA oder 4,5 V; z. B.: Dixell PP30 (0,0÷30,0 BAR) → FA20 = 30,0.
- FCAL Fühlerkalibrierung (Pb2).

17.1.3 Dritter Fühler

P3c - Fühlertyp (Pb3):

- nP → kein Fühler:
- Cur → 4÷20 mA Drucktransmitter;
- tEn → 0.5÷4.5 V ratiometrischer Drucktransmitter:
- nt10 → NTC 10K 25 °C Temperaturfühler:
- nt86 → NTC 86K 25 °C Temperaturfühler.
- 3P04 Untere Messbereichgrenze (Pb3): Druckwert auf 4 mA oder 0,5 V.
- 3P20 Obere Messbereichgrenze (Pb3): Druckwert auf 20 mA oder 4,5 V.
- O3 Fühlerkalibrierung (Pb3).

17.1.4 Vierter Fühler

P4c - Fühlertyp (Pb4):

- nP → kein Fühler;
- nt10 → NTC 10K 25 °C Temperaturfühler;
- nt86 → NTC 86K 25 °C Temperaturfühler.

O4 - Fühlerkalibrierung (Pb4).

17.1.5 Fühlerwahl

2CPb - Fühler für den zweiten Sauggaskreislauf:

- nP → kein Fühler;
- P1 → Pb1;
- **P2** → Pb2;
- P3 → Pb3.

FPb - Fühler für die Verflüssigung:

- nP → kein Fühler;
- P1 → Pb1:
- P2 → Pb2;
- **P3** → Pb3.

17.2 Konfigurierbare Digitaleingänge

iF07 – Siebter Digitaleingang (nur falls P4c = nP, also ohne vierten Fühler):

- nu → Eingang deaktiviert;
- inF → Sicherheitskontakt für das FU-Gebläse, falls es kein Relais belegt;
- **ES** → Energiesparmodus;
- **oFF** → Fernschaltung:
- LL → Niveausensor des Kältemittels;
- SIL → Leisemodus der Gebläse;
- **EAL** → allgemeine Alarmmeldung;
- **LP2** → Niederdruckschalter für den zweiten Kältekreislauf.

iF08 - Achter Digitaleingang:

- nu → Eingang deaktiviert;
- inF → Sicherheitskontakt für das FU-Gebläse, falls es kein Relais belegt:
- **ES** → Energiesparmodus;
- **oFF** → Fernschaltung;
- **LL** → Niveausensor des Kältemittels:
- SIL → Leisemodus der Gebläse:
- **EAL** → allgemeine Alarmmeldung;
- LP2 → Niederdruckschalter für den zweiten Kältekreislauf.

iP01÷6 - Polarität des Sicherheitseingangs 1÷6 (für die Last 1÷6):

- oP → umgekehrte Polarität, also Kontakt aktiv geöffnet;
- cL → direkte Polarität, also Kontakt aktiv geschlossen.

iP07÷8 - Polarität des konfigurierbaren Digitaleingangs 7÷8:

- oP → umgekehrte Polarität, also Kontakt aktiv geöffnet;
- cL → direkte Polarität, also Kontakt aktiv geschlossen.

iP09 - Polarität des Hochdruckschalters:

- oP → umgekehrte Polarität, also Kontakt aktiv geöffnet;
- cL → direkte Polarität, also Kontakt aktiv geschlossen.

iP10 - Polarität des Niederdruckschalters:

- oP → umgekehrte Polarität, also Kontakt aktiv geöffnet;
- cL → direkte Polarität, also Kontakt aktiv geschlossen.

did - Meldungsverzögerung des Niveausensors (falls iF07 oder iF08 = LL).

didA – Meldungsverzögerung der allgemeinen Alarmmeldung (falls iF07 oder iF08 = EAL).

ALMr - Manuelle Quittierung der Verdichter- und Gebläsenalarme:

- YES → Die Verdichter- und Gebläsenalarme von den Sicherheitseingängen der Lasten sollen manuell quittiert werden:
- no → Die Alarme aus den digitalen Eingängen der Verdichter und der Gebläse werden automatisch quittiert, sobald deren entsprechende Digitaleingang deaktiviert wird.

17.3 Anzeige und Maßeinheiten

Der Regler zeigt entweder Druckwerte oder Temperaturwerte, in Abhängigkeit von den folgenden Parametern.

Falls einer von ihnen geändert wird, konvertiert der Regler automatisch die bereits gespeicherten Werte in die neue Maßeinheit: Überprüfen Sie die betroffenen Temperatur- bzw. Druckparameter nach dieser automatischen Umrechnung.

dEU - Anzeigemodus (Temperatur oder Druck):

- tMP → Die Parameter die mit Druck/Temperatur zu tun haben werden als Temperaturwert angezeigt, entsprechend dem Parameter CF (°C or °F);
- PrS → Die Parameter die mit Druck/Temperatur zu tun haben werden als Druckwert angezeigt, entsprechend dem Parameter PMU (bar, PSI or KPA).

CF - Temperaturmaßeinheit:

- C → Celsius;
- F → Fahrenheit.

PMU - Druckmaßeinheit:

- bar → BAR:
 - PSI → PSI:
- PA → kPA.

rES - Auflösung für °C und BAR:

- in → ohne Dezimalstellen;
- dE → mit einer Dezimalstelle.

dEU1 - Anzeigetyp des oberen Displays:

- PrS → Druck:
- tPr → Temperatur.

dSP2 - Anzeigewert des unteren Displays:

- nu → unteres Display ausgeschaltet;
- P1÷4 → Fühler 1÷4;
- StC1÷2 → Saugsollwert 1÷2;
- SetF → Verflüssigungssollwert.

dEU2 - Anzeigetyp des unteren Displays:

- PrS → Druck:
- tPr → Temperatur.

17.4 Verdichtersteuerung

Pbd – Proportionalband oder Neutralzone: Breite des Aktiv- bzw.
 Passivsteuerungsbereiches, der sich ober und unter dem Sollwert symmetrisch verteilt.
 Dieser Parameter wird auch als Proportionalband der PI-Steuerung verwendet.

rS - Verschiebung des Proportionalbandes oder der Neutralzone.

inC - Integralzeit für die PI-Steuerung.

2Pbd - Proportionalband oder Neutralzone des zweiten Kreislaufes.

- **2rS Verschiebung** des Proportionalbandes oder der Neutralzone des zweiten Kreislaufes.
- 2inC Integralzeit des zweiten Kreislaufes.
- ton Laufzeit an der maximalen Drezahl des Frequenzumrichters vor der Einschaltung der nächsten Stufe.
- toF Laufzeit an der minimalen Drezahl des Frequenzumrichters vor der Ausschaltung einer Stufe.
- ESC Sollwertverschiebung während des Energiesparmodus.
- **2ESC Sollwertverschiebung** während des Energiesparmodus des zweiten Sauggaskreislaufes.
- onon Minimales Zeitintervall zwischen zwei Einschaltungen desselben Verdichters.
- oFon Minimales Zeitintervall zwischen der Aus- und der Einschaltung desselben Verdichters.
- don Einschaltverzögerung der Verdichter: Zeitintervall zwischen zwei Einschaltungen von verschiedenen Lasten, solang die Steuerung mehr Leistung anfordert (z. B. über die Neutralzone).
- doF Ausschaltverzögerung der Verdichter: Zeitintervall zwischen zwei Ausschaltungen von verschiedenen Lasten, solang die Steuerung weniger Leistung anfordert (z. B. über die Neutralzone).
- donF Minimale Laufzeit jedes Verdichters.
- Maon Maximale Laufzeit jedes Verdichters: falls dieser Parameter größer als 0 ist, darf jeder Verdichter maximal für "Maon" Stunden dauernd laufen, danach wird er ausgeschaltet und bleibt mindestens für die Zeit "oFon" aus.
- **FdLy "don" sofort aktiv** vor der ersten Lastanforderung: "don" soll ablaufen, bevor die erste Last angefordert werden kann.
- **FdLF "doF" sofort aktiv** vor dem ersten Lastabwurf: "doF" soll ablaufen, bevor die erste Last abgeworfen werden kann.
- odo Steuerungsverzögerung nach der Einschaltung des Reglers.
- LSE Minimaler Sollwert des Saugdruckes bzw. der Verdampfungstemperatur.
- **HSE Maximaler Sollwert** des Saugdruckes bzw. der Verdampfungstemperatur.
- 2LSE Minimaler Sollwert des Saugdruckes bzw. der Verdampfungstemperatur im zweiten Kältekreislauf.
- 2HSE Maximaler Sollwert des Saugdruckes bzw. der Verdampfungstemperatur im zweiten Kältekreislauf.

17.5 Flüssigkeitseinspritzung

- Lit Sollwert der Flüssigkeitseinspritzung in den Verdichter.
- Lid Hysterese der Flüssigkeitseinspritzung.
- **LiPr Fühler** der Flüssigkeitseinspritzung:
 - nP → Funktion deaktiviert;
 - P3 → Temperaturfühler P3;
 - P4 → Temperaturfühler P4.

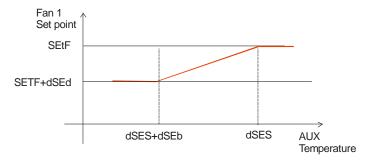
17.6 Verflüssigungsgebläse

- Pb Steuerungsband: der Sollwert steht symmetrisch in der Mitte der Steuerungsband.
- ESF Sollwertverschiebung während des Energiesparmodus.
- PbES Steuerungsband während des Energiesparmodus.
- Fon Einschaltverzögerung der Gebläse: Zeitintervall zwischen zwei Einschaltungen von verschiedenen Lasten, solang die Steuerung mehr Leistung anfordert.
- **FoF Ausschaltverzögerung der Gebläse**: Zeitintervall zwischen zwei Ausschaltungen von verschiedenen Lasten, solang die Steuerung weniger Leistung anfordert.
- LSF Minimaler Sollwert des Verflüssigungsdruckes bzw. der Verflüssigungstemperatur.
- HSF Maximaler Sollwert des Verflüssigungsdruckes bzw. der Verflüssigungstemperatur.

17.7 Alarme der Verdichter

- PAo Alarmverzögerung der Fühler nach der Einschaltung des Reglers.
 Falls der Saugdruck- bzw. Verdampfungstemperaturfühler im Laufe dieser Verzögerung außenhalb seines Meßbereiches ist, werden alle Verdichter eingeschaltet.
- LAL Tiefalarm des Saugdruckes bzw. der Verdampfungstemperatur, unabhängig vom Sollwert (das ist dann ein absoluter Druck- bzw. Temperaturwert).
- **HAL Hochalarm** des Saugdruckes bzw. der Verdampfungstemperatur, unabhängig vom Sollwert (das ist dann ein absoluter Druck- bzw. Temperaturwert).
- tAo Alarmverzögerung des Saugdruckes bzw. der Verdampfungstemperatur.
- ELP Elektronischer Niederdruck- bzw. Temperaturschalter: unter dieser Grenze werden alle Verdichter des ersten Kältekreislaufes sofort abgeschaltet, damit die Auslösung der mechanischen Sicherheiten vermieden werden kann.
- 2LAL Tiefalarm des Saugdruckes bzw. der Verdampfungstemperatur des zweiten Kältekreislaufes, unabhängig vom Sollwert (das ist denn ein absoluter Druck- bzw. Temperaturwert).
- 2HAL Hochalarm des Saugdruckes bzw. der Verdampfungstemperatur des zweiten Kältekreislaufes, unabhängig vom Sollwert (das ist denn ein absoluter Druck- bzw. Temperaturwert).
- **2tAo Alarmverzögerung** des Saugdruckes bzw. der Verdampfungstemperatur des zweiten Kältekreislaufes.
- 2ELP Elektronischer Niederdruck- bzw. Temperaturschalter des zweiten Kältekreislaufes: unter dieser Grenze werden alle Verdichter des zweiten Kältekreislaufes sofort abgeschaltet, damit die Auslösung der mechanischen Sicherheiten vermieden werden kann.
- SEr Wartungsanforderungen: falls die Betriebsstunden einer Last diesen Parameter überschritten, wird eine Wartungsmeldung ("A14") ausgelöst.
 Die Einstellung des Parameters auf 0 schaltet die Wartungsmeldungen aus.
- PEn Maximale Anzahl der Auslösungen des Niederdruckschalters innerhalb der Zeit "PEI". Nach deren Überschreitung dürfen die Verdichter nicht mehr laufen, bis dieser Alarm manuell quittiert wird.
- PEI Überwachungszeit des Niederdruckschalters.

- SPr Angeforderte Verdichterstufen falls der Saugdruck- bzw.
 Verdampfungstemperaturfühler nicht funktioniert.
- 2PEn Maximale Anzahl der Auslösungen des Niederdruckschalters des zweiten Kältekreislaufes innerhalb der Zeit "PEI". Nach deren Überschreitung dürfen die Verdichter nicht mehr laufen, bis dieser Alarm manuell quittiert wird.
- 2PEI Überwachungszeit des Niederdruckschalters des zweiten Kältekreislaufes.
- 2SPr Angeforderte Verdichterstufen falls der Saugdruck- bzw. Verdampfungstemperaturfühler des zweiten Kältekreislaufes nicht funktioniert.
- PoPr Angeforderte Verdichtungsleistung falls der Saugdruck- bzw. Verdampfungstemperaturfühler nicht funktioniert und die Verdichter inhomogene Leistungen besitzen ("CtyP" = "dPo").


17.8 Alarme der Gebläse

- **LAF Tiefalarm** des Verflüssigungsdruckes bzw. der Verflüssigungstemperatur, unabhängig vom Sollwert (das ist dann ein absoluter Druck- bzw. Temperaturwert).
- **HAF Hochalarm** des Verflüssigungsdruckes bzw. der Verflüssigungstemperatur, unabhängig vom Sollwert (das ist dann ein absoluter Druck- bzw. Temperaturwert).
- **AFd Alarmverzögerung** des Verflüssigungsdruckes bzw. der Verflüssigungstemperatur.
- LiPr Fühler der Flüssigkeitseinspritzung:
 - nP → Funktion deaktiviert;
 - P3 → Temperaturfühler P3;
- HFC Verdichterabschaltung während eines Hochalarms am Verflüssiger:
 - no → ein Hochalarm am Verflüssiger beeinflusst die Verdichter nicht;
 - yES → ein Druckalarm am Verflüssiger wirft die Verdichter nacheinander ab.
- **dHF Ausschaltverzögerung der Verdichter**: Zeitintervall zwischen zwei Ausschaltungen von verschiedenen Verdichtern, solang es einen Hochalarm am Verflüssiger gibt.
- PnF Maximale Anzahl der Auslösungen des Hochdruckschalters innerhalb der Zeit "PEI". Nach deren Überschreitung dürfen die Verdichter nicht mehr laufen und alle Gebläse werden eingeschaltet, bis dieser Alarm manuell quittiert wird.
- PiF Überwachungszeit des Hochdruckschalters.
- **FPr Angeforderte Gebläsestufen** falls der Verflüssigungsdruck- bzw. Verflüssigungstemperaturfühler nicht funktioniert.

17.9 Dynamischer Verflüssigungssollwert

- dSEP Fühler des dynamischen Verflüssigungssollwerts:
 - nP → Funktion deaktiviert:
 - P3 → Temperaturfühler P3;
 - P4 → Temperaturfühler P4.
- dSES Außentemperaturwert wo die Verschiebung des Verflüssigungssollwerts anfängt.
- dSEb Steuerungsband der linearen Verschiebung des Verflüssigungssollwerts.
- dSEd Maximale Sollwertsverschiebung (bei "dSES" "dSEb").

17.10 Analoger Ausgang 1

AOC - Signaltyp des Analogausgangs:

- **tEn** → 0÷10 V;
- **cUr** → 4÷20 mA.

AOF - Funktion des Analogausgangs:

- nu → Ausgang deaktiviert;
- Inc1 → Frequenzumrichter der Verdichter des ersten Kältekreislaufes;
- Inc2 → Frequenzumrichter der Verdichter des zweiten Kältekreislaufes;
- inF → Drehzahlregelung der Gebläse.

InCP - Drehzahlgeregelter Verdichter als erste Last:

- no → Ausgang deaktiviert;
- yES → Der drehzalgeregelte Verdichter wird immer vor allen anderen Lasten des entsprechenden Kältekreislaufes angefordert: falls er wegen seiner Sicherheitszeiten und trotz einer Kühlanforderung nicht laufen darf, müssen diese Zeitintervalle zuerst ablaufen, bevor die Steuerung anfangen kann.

AOM - Minimaler Wert des ersten Analogausgangs.

AOt – Anlaufzeit des ersten Analogausgangs: nach dem Anfang der Steuerung bleibt der Ausgang diese Zeit lang auf 100%, damit die entsprechende Last ihre Anlaufsträgheit überwinden kann.

MPM – Maximale Prozentänderung des Ausgangssignals pro Minute ("nu" = keine Begrenzung).

- SAO Prozentwert des Ausgangssignals falls der entsprechende Regelungsfühler nicht funktioniert.
- **AOH Begrenzung des Ausgangssignals** während des Leisemodus, falls der Analogausgang die Verflüssigungsgebläse steuert.

17.11 Analoger Ausgang 2

2AOC - Signaltyp des Analogausgangs:

- **tEn** → 0÷10 V:
- cUr → 4÷20 mA.

2AOF - Funktion des Analogausgangs:

- nu → Ausgang deaktiviert;
- Inc1 → Frequenzumrichter der Verdichter des ersten Kältekreislaufes;
- Inc2 → Frequenzumrichter der Verdichter des zweiten Kältekreislaufes;
- inF → Drehzahlregelung der Gebläse.

2InCP - Drehzahlgeregelter Verdichter als erste Last:

- no → Ausgang deaktiviert;
- yES → Der drehzalgeregelte Verdichter wird immer vor allen anderen Lasten des entsprechenden Kältekreislaufes angefordert: falls er wegen seiner Sicherheitszeiten und trotz einer Kühlanforderung nicht laufen darf, müssen diese Zeitintervalle zuerst ablaufen, bevor die Steuerung anfangen kann.
- 2AOM Minimaler Wert des ersten Analogausgangs.
- 2AOt Anlaufzeit des ersten Analogausgangs: nach dem Anfang der Steuerung bleibt der Ausgang diese Zeit lang auf 100%, damit die entsprechende Last ihre Anlaufsträgheit überwinden kann.
- **2MPM Maximale Prozentänderung des Ausgangssignals pro Minute** ("nu" = keine Begrenzung).
- **2SAO Prozentwert des Ausgangssignals** falls der entsprechende Regelungsfühler nicht funktioniert.
- **2AOH Begrenzung des Ausgangssignals** während des Leisemodus, falls der Analogausgang die Verflüssigungsgebläse steuert.

17.12 Allgemeines

tbA - Quttierung des Alarmausgangs durch die Tastatur:

- no → die Tastatur beeinflusst den Zustand des Alarmausgangs nicht;
- vES → der Alarmausgang, wenn aktiv, kann durch iede Taste guittiert werden.

OAP - Polarität des Alarmausgangs beim aktiven Alarm:

- cL → Relais angezogen;
- oP → Relais nicht angezogen.

oFF - Ein- und Ausschaltung der Steuerung durch die Tastatur:

- no → Funktion deaktiviert:
- yES → Durch 4 Sekunden langes Drücken der SET-Taste, wird die ganze Steuerung ein- oder ausgeschaltet.

bUr - Alarmsummer:

- no → Alarmsummer immer deaktiviert;
- yES → Alarmsummer aktiviert beim Alarm.
- Adr Serielle Adresse fürs ModBus-Protokoll (z. B. zum Xweb Überwachungssystem).
- rEL Softwareversion: nur lesbar.
- Ptb Version der Werkseinstellungen: nur lesbar.
- Pr2 Verknüpfung zur zweiten Parameterebene.

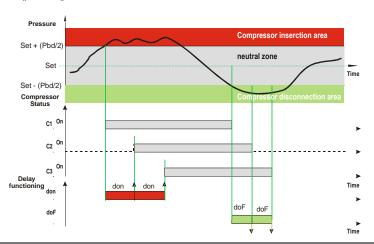
18. Verdichtersteuerung

18.0 Neutralzone

Zur Steuerung **aller Verdichter jeder Art** wird eine Neutralzone angewendet, sowohl für den ersten Kältekreislauf als auch für den zweiten, falls es einen zweiten gibt.

Die Neutralzone setzt den Saugdruck- bzw. Verdampfungstemperatursollwert symmetrisch in ihre Mitte. Die gesamte Breite ist das Steuerungsband "Pbd", deshalb befindet es sich im Bereich:

Solange der Saugdruck bzw. die Verdampfungstemper innerhalb der Neutralzone bleibt, behalten alle Lasten ihre jetzigen Zustände (deshalb heißt dieser Bereich "neutral"). Sobald der Saugdruck bzw. die Verdampfungstemper die obere oder die untere Grenze der Neutralzone überschreitet, werden die Lasten nach Zeit angefordert oder abgeworfen. Die jeweiligen Sicherheitszeiten jeder Last haben selbstverständlich Priorität vor den Anforderungen der Neutralzone.


18.1 Verdichter gleicher Leistung

Da alle Verdichter gleichmäßig auf den Kältekreislauf wirken, werden Sie zyklisch nacheinander ein- und ausgeschaltet, sodass deren Betriebsstunden stetig ausgeglichen werden können.

18.1.1 Beispiel: drei einstufige Verdichter

Betroffene Parameter:

- "oA1÷3" = "cPr1";
- "oA4÷6" = "nu";
- "CtvP" = "SPo";
- "FdLy" = "no";
- "dLF" = "no".

18.2 Verdichter mit unterschiedlichen Leistungen

Da die verschiedenen Verdichter nicht gleichmäßig auf den Kältekreislauf wirken, dürfen Sie nicht einfach nacheinander ein- und ausgeschaltet werden, sondern werden sie miteinander kombiniert um der Kühlanforderung am besten zu folgen.

Die somit erzeugten Leistungsstufen werden, außenhalb der Neutralzone, nach Zeit ein- und ausgeschaltet, genauso wie die einzelnen Verdichter gleicher Leistung im Kapitel 18.1.

Solche Steuerungslogik erlaubt keinen aktiven Betriebsstundenausgleich.

18.2.1 Beispiel: vier Verdichter unterschiedlicher Leistungen

Betroffene Parameter:

- "oA1÷4" = "cPr1";
- "oA5÷6" = "nu";
- "CtyP" = "dPo";
- "Pc1" = 10;
- "Pc2" = 15;
- "Pc3" = 30;
- "Pc4" = 40.

Leistungsstufe	Pc1 = 10	Pc2 = 15	Pc3 = 30	Pc4 = 40	Gesamtleistung
1	EIN	AUS	AUS	AUS	10
2	AUS	EIN	AUS	AUS	15
3	EIN	EIN	AUS	AUS	25
4	AUS	AUS	EIN	AUS	30
5	AUS	AUS	AUS	EIN	40
6	AUS	EIN	EIN	AUS	45
7	EIN	AUS	AUS	EIN	50
8	AUS	EIN	AUS	EIN	55
9	EIN	EIN	AUS	EIN	65
10	AUS	AUS	EIN	EIN	70
11	EIN	AUS	EIN	EIN	80
12	AUS	EIN	EIN	EIN	85
13	EIN	EIN	EIN	EIN	95

Falls die angeforderte Stufe wegen der Sicherheitszeiten ("onon", "oFon", "donF" und "MAon") oder wegen der Sicherheitsketten nicht verfügbar ist, wird die nächste verfügbare Stufe verwendet werden.

18.3 Schraubenverdichter

WICHTIGER HINWEIS

Der Regler kann die Laufzeit eines stufigen Schraubenverdichters auf 25% seiner Leistung nicht begrenzen.

Falls der Verdichter solche Begrenzung erfordert, normalerweise wegen der Überhitzung seines Motors, muss man eine externe Sicherung vorsehen, z. B. mit einem Zeitrelais.

Weder Dixell Srl noch Cool Italia GmbH übernehmen Verantwortung dafür.

Der Regler kann einen Schraubenverdichter im ersten Kältekreislauf steuern, dessen Steuerung immer durch die Neutralzone erfolgt.

Die Schaltungslogik der Verdichterstufen folgt der von Bitzer (z. B. Baureihen CSH und CSW).

18.3.1 <u>Beispiel 1: Bitzer Schraubenverdichter mit vier Stufen</u> (Teillastventile mit direkter Polarität)

Betroffene Parameter:

- "oA1" = "Cpr1";
- "oA2÷4" = "StP";
- "oA5÷6" = "nu";
- "CtyP" = "Scr";
- "StP" = "cL".

	oA1 = "cPr1"	oA2 = "StP"	oA3 = "StP"	oA4 = "StP"
Step 1 (25%)	EIN	EIN	AUS	AUS
Step 2 (50%)	EIN	AUS	EIN	AUS
Step 3 (75%)	EIN	AUS	AUS	EIN
Step 4 (100%)	EIN	AUS	AUS	AUS

18.3.2 <u>Beispiel 2: Bitzer Schraubenverdichter mit vier Stufen</u> (Teillastventile mit umgekehrter Polarität)

Betroffene Parameter:

- "oA1" = "cPr1";
- "oA2÷4" = "StP";
- "oA5÷6" = "nu";
- "CtvP" = "Scr";
- "StP" = "oP".

	oA1 = "cPr1"	oA2 = "StP"	oA3 = "StP"	oA4 = "StP"
Step 1 (25%)	EIN	AUS	EIN	EIN
Step 2 (50%)	EIN	EIN	AUS	EIN
Step 3 (75%)	EIN	EIN	EIN	AUS
Step 4 (100%)	EIN	EIN	EIN	EIN

19. Verflüssigungsgebläse

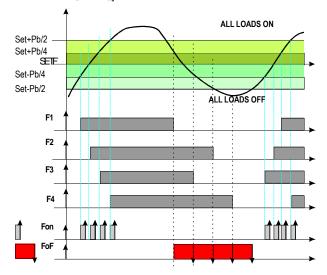
19.0 Proportionalband

Zur Steuerung der Verflüssigungsgebläse wird eine Proportionalband, das gleichmäßig durch die Anzahl der verfügbaren Gebläse aufgeteilt wird, angewendet.

Das Proportionalband setzt den Verflüssigungsdruck- bzw. Verflüssigungstemperatursollwert symmetrisch in seine Mitte und seine gesamte Breite ist das Steuerungsband "Pbd", deshalb befindet es sich im Bereich:

Die Anzahl der angeforderten Gebläse ist deshalb proportional zur Abweichung vom Sollwert innerhalb des Steuerungsbandes. Gebläse aus unterhalb des Steuerungsbandes und Volllauf oberhalb.

Jedes Gebläse darf natürlich laufen, nur wenn seine Sicherheitszeiten und Sicherheitsketten die Anforderung der Last erlauben.


Solche Steuerungslogik gewährleistet den Betriebsstundenausgleich durch Lastenrotation, falls der Parameter ("rot") entsprechend eingestellt ist.

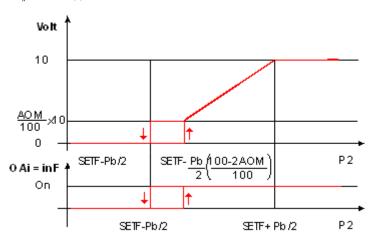
19.0.1 Beispiel 1: vier Gebläse mit Lastenrotation

Betroffene Parameter:

- "oA1" = "cPr1";
- "oA2÷5" = "FAn";
- "oA6" = "nu";
- "rot" = "yES".

19.0.2Beispiel 2: drehzahlgeregelte Gebläse

Es gibt die Möglichkeit, **alle Verflüssigungsgebläse parallel** modulierbar anzusteuern, z. B. wenn sie von einem Frequenzumrichter bzw. Phasenanschnittmodul angetrieben werden oder wenn sie EC-Motoren besitzen.


Das vom Regler ausgegebene Steuerungssignal hängt direkt vom Verflüssigungsdruck bzw. von der Verflüssigungstemperatur ab und wird im Bereich:

SETF - Pbd / 2 ÷ SETF + Pbd / 2

linear ausgegeben.

Betroffene Parameter:

- "AoC" = "tEn";
- "AoF" = "InF";
- "oAi" = "inF" (optional);
- "Aot" = 0;
- "AOM" = 30:
- "MPM" = 100.

20. Alarme

Die Alarmereignisse werden so gemeldet und aufgezeichnet:

- · der Alarmausgang wird aktiviert, falls es einen gibt;
- der Alarmsummer wird aktiviert, falls er aktiv ist;
- das Display zeigt die entsprechende Alarmmeldung an;
- das Alarmlog zeichnet den Alarmcode und die entsprechende Dauer auf.

Die komplette Alarmliste finden Sie im Kapitel 22.2.

20.0 Alarmliste

20.0.1A12: Konfigurationsalarme

Falls die bereits eingestellte Konfiguration nicht akzeptable ist, zeigt das obere Display die Meldung "A12" an, während das untere eine spezifische Alarmbeschreibung anzeigt.

Nachricht	Fehler	Lösung
StEP ConFiG Error	Konfiguration der Verdichterstufen	Verdichterstufen wurden konfiguriert aber vor den Stufen wurde kein Verdichter eingestellt
Fan ProbE not PrESEnt	Es gibt keinen Verflüssigungsfühler, obwohl Gebläse konfiguriert worden sind	Überprüfen Sie die Parameter der Fühler der Verflüssigung (je nach FPb)
No P3 ProbE For Lin out	Es gibt keinen Einspritzungsfühler, obwohl die Flüssigkeitseinspritzung konfiguriert worden ist	Überprüfen Sie die Parameter der Fühler der Flüssigkeitseinspritzung (je nach LiPr)
no LoAdS For rEGuLAtion	Es gibt keine Last	Überprüfen Sie die Parameter oA(i)
ProbE tyPE For dynAMic Set	Ein Drucktransmitter ist als Fühler des dynamischen Verflüssigungssollwerts konfiguriert worden	Überprüfen Sie die Parameter der Fühler des dynamischen Sollwerts (je nach dSEP)
No ProbE For dynAMic Set	Es gibt keinen Fühler für den dynamischen Verflüssigungssollwert, obwohl diese Funktion konfiguriert worden ist	Überprüfen Sie die Parameter der Fühler des dynamischen Sollwerts (je nach dSEP)
too MAnY InC1	Es gibt mehrere Frequenzumrichter der Verdichter (inC1) im ersten Kältekreislauf	Überprüfen Sie die Parameter oA(i)
No AnALoGuE out For InC1	Es gibt keinen Analogausgang für den Frequenzumrichter der Verdichter im ersten Kältekreislauf, obwohl diese Last konfiguriert worden ist	Überprüfen Sie die Parameter AoF und 2AoF
too MAnY InC2	Es gibt mehrere Frequenzumrichter der Verdichter (inC2) im zweiten Kältekreislauf	Überprüfen Sie die Parameter oA(i)
No AnALoGuE out For InC2	Es gibt keinen Analogausgang für den Frequenzumrichter der Verdichter im zweiten Kältekreislauf, obwohl diese Last konfiguriert worden ist	Überprüfen Sie die Parameter AoF und 2AoF
too MAnY InF	Es gibt mehrere Frequenzumrichter der Gebläse (inF)	Überprüfen Sie die Parameter oA(i)
No AnALoGuE out For InF	Es gibt keinen Analogausgang für den Frequenzumrichter der Gebläse, obwohl diese Last konfiguriert worden	Überprüfen Sie die Parameter AoF und 2AoF

Nachricht	Fehler	Lösung
	ist	
CPr Circuit	Obwohl zwei Kältekreisläufe	Überprüfen Sie die Parameter oA(i)
conFiG Error	konfiguriert worden sind, passen die konfigurierten Lasten nicht	Kein Schraubenverdichter ist für zwei Kältekreisläufe erlaubt
AO1 And AO2 SAME Function	Beide Analogausgänge führen dieselbe Funktion durch	Überprüfen Sie die Parameter AoF und 2AoF

20.0.2 E01L und E02L: elektronische Niederdruckschalter

Meldung	Ursache	Wirkung	Quittierung
E01L	Saugdruck bzw. Verdampfungstemperatur im ersten Kältekreislauf < ELP	Alle Verdichter des entsprechenden	Automatisch, sobald die entsprechende Variable
E02L	Saugdruck bzw. Verdampfungstemperatur im zweiten Kältekreislauf < 2ELP	Kältekreislaufes werden abgeschaltet und dürfen nicht wieder anlaufen	wieder steigt

20.0.3 E1L1: Niederdruckschalter des ersten Kältekreislaufes

ANMERKUNG: der entsprechende Eingang funktioniert direkt mit der 230 Vac Spannung.

Meldung	Ursache	Wirkung	Quittierung
		Alle Verdichter werden	Manuell nach "PEn"
E1L1	Eingang LP aktiv	sofort abgeschaltet und	Ereignisse innerhalb der
	Lingarig Li aktiv	dürfen nicht wieder	"PEI" Zeit,
		anlaufen	sonst automatisch

20.0.4E0L2: Niederdruckschalter des zweiten Kältekreislaufes

ANMERKUNG: der entsprechende Eingang funktioniert potentialfrei.

Meldung	Ursache	Wirkung	Quittierung
		Alle Verdichter werden	Manuell nach "2PEn"
E0L2	Entsprechender Eingang	sofort abgeschaltet und	Ereignisse innerhalb der
	(i7F oder i8F) aktiv	dürfen nicht wieder	"2PEI" Zeit,
		anlaufen	sonst automatisch

20.0.5 E0H1: Hochdruckschalter

ANMERKUNG: der entsprechende Eingang funktioniert direkt mit der 230 Vac Spannung.

Meldung	Ursache	Wirkung	Quittierung
E0H1	Eingang HP aktiv	Alle Verdichter werden sofort abgeschaltet und dürfen nicht wieder anlaufen, alle Gebläse laufen	Manuell nach "PnF" Ereignisse innerhalb der "PiF" Zeit, sonst automatisch

20.0.6EA1÷EA6: Sicherheitsketten der Lasten

ANMERKUNG: die entsprechenden Eingänge funktionieren potentialfrei.

Meldung	Ursache	Wirkung	Quittierung
EA1	Eingang DI01 aktiv		
EA2	Eingang DI02 aktiv		
EA3	Eingang DI03 aktiv	Die entsprechende Last	Automatisch oder
EA4	Eingang DI04 aktiv	wird sofort abgeschaltet	manuel, je nach "ALMr"
EA5	Eingang DI05 aktiv		
EA6	Eingang DI06 aktiv		

20.0.7P1, P2; P3,P4: probe failure alarm

Meldung	Ursache	Wirkung	Quittierung
P1	Der entsprechende		
P2	Fühler ist nicht korrekt	Die entsprechende Regelrfunktion wird	Automatisch
P3	konfiguriert bzw.	deaktiviert	Automatisch
P4	angeschlossen worden	doditivion	

20.0.8<u>C1HA und C1LA: Hoch- und Niederalarm des Saugdruckes bzw.</u> <u>der Verdampfungstemperatur des ersten Kältekreislaufes</u>

Meldung	Ursache	Wirkung	Quittierung
С1НА	Saugdruck bzw. Verdampfungstemperatur im ersten Kältekreislauf > HAL	Nur Meldung	Automatisch
C1LA	Saugdruck bzw. Verdampfungstemperatur im ersten Kältekreislauf < LAL	Nur Meldung	Automatisch

20.0.9 <u>C2HA und C2LA: Hoch- und Niederalarm des Saugdruckes bzw.</u> der Verdampfungstemperatur des zweiten Kältekreislaufes

Meldung	Ursache	Wirkung	Quittierung
С2НА	Saugdruck bzw. Verdampungstemperatur im zweiten Kältekreislauf > 2HAL	Nur Meldung	Automatisch
C2LA	Saugdruck bzw. Verdampungstemperatur im zweiten Kältekreislauf < 2LAL	Nur Meldung	Automatisch

20.0.10 <u>F-HA und F-LA: Hoch- und Niederalarm des Verflüssigungsdruckes bzw. der Verflüssigungstemperatur</u>

Meldung	Ursache	Wirkung	Quittierung
F-HA	Verflüssigungsdruck bzw. Verflüssigungstemperatur > LAF	Nur Meldung	Automatisch
F-LA	Verflüssigungsdruck bzw. Verflüssigungstemperatur < HAF	Nur Meldung	Automatisch

20.0.11 <u>InF: Sicherheitskette des Frequenzumrichters der Verflüssigung</u>

ANMERKUNG: falls Sie einen Frequenzumrichter in der Verflüssigung einsetzen wollen, ohne eine Stufe des Reglers zu belegen, fehlt Ihnen der Kontakt für die Sicherheitskette des Geräts. In diesem Fall können Sie sie an einen konfigurierbaren Digitaleingang anschliessen.

Meldung	Ursache	Ursache Wirkung	
InF	Entsprechender Eingang (i7F oder i8F) aktiv	Die entsprechende Last wird sofort abgeschaltet	Automatisch

20.0.12 <u>Externe Alarmmeldung</u>

Meldung	Ursache	Ursache Wirkung	
EA	Entsprechender Eingang (i7F oder i8F) aktiv	Nur Meldung	Automatisch

20.0.13 <u>Kältemittelmangel</u>

Meldung	Ursache	Wirkung	Quittierung
A5	Entsprechender Eingang (i7F oder i8F) aktiv	Nur Meldung	Automatisch

20.0.14 <u>Wartungsalarm</u>

Meldung	Ursache	Wirkung	Quittierung
A14	Die Betriebsstunden einer Last haben die Wartungsgrenze überschritten	Nur Meldung	Manuell, durchs Zurücksetzen der entsprechenden Betriebsstunden

20.1 Quittierung des Alarmsummers

Drücken Sie einmal irgendwelche Taste um den Alarmsummer zu quittieren.

Halten Sie irgendwelche Taste gedrückt während eines Alarmes um den Alarmausgang zu deaktivieren.

21. Technische Daten

Gehäuse: selbstverlöschender Kunststoff.

Abmessungen: 4 DIN-Modul 70x135x60 mm (BxHxT).

Montage: auf DIN-Hutschiene.

Schutzart: IP20.

Anschlüsse: abnehmbare Schraubklemmen mit Kabelquerschnitt ≤ 2.5 mm².

Spannungsversorgung: 230 Vac ±10% 50Hz.

Leistungsaufnahme: 6 VA.

Analoge Eingänge: 3x NTC / 4÷20 mA / 0.5÷4.5 Vdc, 1x NTC. Digitale Eingänge: 8x potentialfrei, 2x 230 Vac Spannung.

Analogue output: 2 x 4÷20mA or 0÷10V.

Analoge Ausgänge: 4÷6x Relais SPST 5(3)A 250 Vac.

Serielle Schnittstelle: RS485.

Kommunikationsprotokoll: ModBus-RTU.

Speicherplatz: EEPROM.

Sicherheitsklasse der Software: A. Betriebstemperaturbereich: -10÷60 °C. Lagerungtemperaturbereich: -25÷80 °C.

Feuchtigkeitsbereich: 20-85% (ohne Kondensierung).

Messbereich der NTC-Fühler: -40÷110 °C.

Genauigkeit der NTC-Fühler (25°C): ±0,7 °C ±1 Ziffer.

Auflösung der Messungen: 0,1 °C / 0.1 bar.

22. Parameterliste

Name	Ab Werk	Ebene	Beschreibung	Bereich
StC1	-10.0	Pr1	Sollwert der Verdichter Kältekreislauf 1	LSE÷HSE
StC2	-30.0	Pr1	Sollwert der Verdichter Kältekreislauf 2	2LSE÷2HSE
SEtF	35.0	Pr1	Sollwert der Gebläse	LSF÷HSF
OA1	CPr	Pr2	Konfiguration der Last 1	nu - CPr1 - CPr2 - StP - dGS - 6dG - dGSt - InC1 - InC2 - FAn - InF - LIn - ALr
OA2	CPr	Pr2	Konfiguration der Last 2	nu - CPr1 - CPr2 - StP - dGS - 6dG - dGSt - InC1 - InC2 - FAn - InF - LIn - ALr
OA3	CPr	Pr2	Konfiguration der Last 3	nu - CPr1 - CPr2 - StP - dGS - 6dG - dGSt - InC1 - InC2 - FAn - InF - LIn - ALr
OA4	FAn	Pr2	Konfiguration der Last 4	nu - CPr1 - CPr2 - StP - dGS - 6dG - dGSt - InC1 - InC2 - FAn - InF - LIn - ALr
OA5	FAn	Pr2	Konfiguration der Last 5	nu - CPr1 - CPr2 - StP - dGS - 6dG - dGSt - InC1 - InC2 - FAn - InF - LIn - ALr
OA6	FAn	Pr2	Konfiguration der Last 6	nu - CPr1 - CPr2 - StP - dGS - 6dG - dGSt - InC1 - InC2 - FAn - InF - LIn - ALr
CtyP	SPo	Pr2	Verdichtertyp	SPo - dPo - Scr
StP	SPo	Pr2	Polarität der Verdichterstufen	OP - CL
PC1	20	Pr2	Leistung des Verdichters 1	0÷100
PC2	20	Pr2	Leistung des Verdichters 2	0÷100
PC3	20	Pr2	Leistung des Verdichters 3	0÷100
PC4	20	Pr2	Leistung des Verdichters 4	0÷100
PC5	20	Pr2	Leistung des Verdichters 5	0÷100

Name	Ab Werk	Ebene	Beschreibung	Bereich
PC6	20	Pr2	Leistung des Verdichters 6	0÷100
FtyP	404	Pr2	Kältemitteltyp	r22 - 404 - 407A - 407C - 407F - 410 - 507 - 134 - CO2
Sty	vES	Pr2	Betriebsstundenausgleich der Verdichter	no - yES
Rot	yES	Pr2	Betriebsstundenausgleich der Gebläse	no - yES
P1C	Cur	Pr2	Fühler P1 (4÷20mA - 0÷5V - ntc)	nP - Cur - tEn - ntc
PA04	-0.5	Pr2	Messung Fühler P1 bei 4 mA oder 0.5 V	-1.0 ÷ PA20 bar
PA20	11.0	Pr2	Messung Fühler P1 bei 20 mA oder 4.5 V	PA04 ÷ 51.0 bar
CAL	0.0	Pr2	Kalibrierung Fühler P1	-12.0÷12.0 °C; 12.0÷12.0 bar
P2C	Cur	Pr2	Fühler P2 (4÷20mA - 0÷5V - ntc)	nP - Cur - tEn - ntc
FA04	0.0	Pr2	Messung Fühler P2 bei 4 mA oder 0.5 V	-1.0 ÷ FA20 bar
FA20	30.0	Pr2	Messung Fühler P2 bei 20 mA oder 4.5 V	FA04 ÷ 51.0 bar
FCAL	0.0	Pr2	Kalibrierung Fühler P2	-12.0÷12.0 °C; 12.0÷12.0 bar
P3C	nP	Pr2	Fühler P3 (4÷20 mA - 0÷5 V - ntc10/86)	nP - Cur - tEn - nt10 - nt86
3P04	-0.5	Pr2	Messung Fühler P3 bei 4 mA oder 0.5 V	-1.0 ÷ 3P20 bar
3P20	11.0	Pr2	Messung Fühler P3 bei 20 mA oder 4.5 V	3P04 ÷ 51.0 bar
03	0.0	Pr2	Kalibrierung Fühler P3	-12.0÷12.0 °C; 12.0÷12.0 bar
P4C	nΡ	Pr2	Fühler P4 (ntc10/86)	nP - nt10 - nt86
04	0.0	Pr2	Kalibrierung Fühler P4	-12.0÷12.0 °C
2CPb	nΡ	Pr2	Fühler für die Verdichter Kältekreislauf 2	nP - P1 - P2 - P3
FPb	P2	Pr2	Fühler für die Verflüssigung	nP - P1 - P2 - P3
iF07	ES	Pr2	Digitaleingang i7F (22-23)	nu - OA1- OA2 - OA3 - OA4 - OA5 - OA6 - InF - LP1 - LP2 - HP - ES - OFF - LL - SIL - EAL
iF08	LL	Pr2	Digitaleingang i8F (22-24)	nu - OA1- OA2 - OA3 - OA4 - OA5 - OA6 - InF - LP1 - LP2 - HP - ES - OFF - LL - SIL - EAL
iP01	cL	Pr2	Polarität Sicherheitskette Last 1 (13-14)	OP - CL
iP02	cL	Pr2	Polarität Sicherheitskette Last 2 (13-15)	OP - CL
iP03	cL	Pr2	Polarität Sicherheitskette Last 3 (16-17)	OP - CL
iP04	cL	Pr2	Polarität Sicherheitskette Last 4 (16-18)	OP - CL
iP05	cL	Pr2	Polarität Sicherheitskette Last 5 (19-20)	OP - CL
iP06	cL	Pr2	Polarität Sicherheitskette Last 6 (19-21)	OP - CL
iP07	cL	Pr2	Polarität Digitaleingang i7F (22-23)	OP - CL
iP08	cL	Pr2	Polarität Digitaleingang i8F (22-24)	OP - CL
iP09	cL	Pr2	Polarität HP-Eingang (45-46)	OP - CL
iP10	cL oo	Pr2	Polarität LP-Eingang (44-45)	OP - CL
did didA	20 20	Pr2 Pr2	Meldungsverzögerung Kältemittelmangel	0÷255 min 0÷255 min
ALMr		Pr2	Meldungsverzögerung Externalarm	no - yES
dEU	no tPr	Pr2	Manuelle Quittierung der Sicherheitsketten Anzeige: Druck oder Temperatur	tMP - PrS
CF	°C	Pr2	Maßeinheit der Temperatur	°C - °F
PMU	Bar	Pr2	Maßeinheit der Temperatur Maßeinheit des Druckes	BAr - PSI - PA
rES	dE	Pr2	Anzeige mit oder ohne Dezimalstelle	in - dE
dFE	no	Pr2	Anzeige mit oder omre bezimalstelle Anzeigefilter (gegen Schwankungen)	no - yES
dEU1	tPr	Pr2	Oberes Display: Druck oder Temperatur	tMP - PrS
dSP2	P2	Pr2	Anzeige am unteren Display	nu - P1 - P2 - P3 - P4 - StC1 - StC2 - SEtF
dEU2	tPr	Pr2	Unteres Display: Druck oder Temperatur	tMP - PrS
Pbd	5.0	Pr2	Steuerungsband Verdichter Kältekreislauf 1	0.1÷30.0 °C; 0.1÷10.0 bar
rS	0.0	Pr2	Bandverschiebung Verdichter Kältekreislauf 1	-12.0÷12.0 °C; -12.0÷12.0 bar

Name	Ab Werk	Ebene	Beschreibung	Bereich
inC	500	Pr2	Integralzeit FU-Verdichter Kältekreislauf 1	0 ÷ 999 s
2Pbd	5.0	Pr2	Steuerungsband Verdichter Kältekreislauf 2	0.1÷30.0 °C; 0.1÷10.0 bar
2rS	0.0	Pr2	Bandverschiebung Verdichter Kältekreislauf 2	-12.0÷12.0 °C; -12.0÷12.0 bar
2inC	500	Pr2	Integralzeit FU-Verdichter Kältekreislauf 2	0÷999 s
ton	60	Pr2	FU-Verdichter auf 100% bevor Last anfordern	0÷255 s
toF	5	Pr2	FU-Verdichter auf "AOM" bevor Last abwerfen	0÷255 s
ESC	0.0	Pr1	Sollwertverschiebung (Energiesparmodus) der Verdichter Kältekreislauf 1	-50.0÷50.0 °C; -20.0÷20.0 bar
2ESC	0.0	Pr1	Sollwertverschiebung (Energiesparmodus) der Verdichter Kältekreislauf 2	-50.0÷50.0 °C; -20.0÷20.0 bar
OnOn	5	Pr2	Minimale Zeit zwischen Einschaltungen gleicher Last	0÷255 min
OFOn	2	Pr2	Minimale Zeit zwischen Aus- und Einschaltung gleicher Last	0÷255 min
don	01:00	Pr2	Zeit zwischen Anforderungen verschiedener Verdichter	0÷99.5 min (Auflösung 10 s)
doF	00:10	Pr2	Zeit zwischen Abwurfen verschiedener Verdichter	0÷99.5 min (Auflösung 10 s)
donF	00:30	Pr2	Minimale Laufzeit jeder Last	0÷99.5 min (Auflösung 10 s)
MAon	0	Pr2	Maximale Laufzeit jeder Last (0 = Funktion aus)	0 ÷ 24 hr
FdLy	no	Pr2	"don" läuft vor der ersten Anforderung ab	no - yES
FdLF	no	Pr2	"doF" läuft vor dem ersten Abwurf ab	no - yES
odo	20	Pr2	Steuerungsverzögerung nach der Einschaltung	0÷255 s
LSE	-40.0	Pr2	Minimaler Sollwert der Verdichter Kältekreislauf 1	-50.0÷HSE °C; PA04÷HSE bar
HSE	10.0	Pr2	Maximaler Sollwert der Verdichter Kältekreislauf 1	LSE÷150.0 °C; LSE÷PA20 bar
2LSE	-40.0	Pr2	Minimaler Sollwert der Verdichter Kältekreislauf 2	-50.0÷2HSE °C; 3P04÷2HSE bar
2HSE	10	Pr2	Maximaler Sollwert der Verdichter Kältekreislauf 2	LSE÷150.0 °C; LSE÷3P20 bar
Lit	90.0	Pr2	Sollwert der Flüssigkeitseinspritzung	0.0÷180.0 °C
Lid	10.0	Pr2	Hysterese der Flüssigkeitseinspritzung	0.1÷25.5 °C
LiPr	nΡ	Pr2	Fühler der Flüssigkeitseinspritzung	nP - P3 - P4
Pb	5.0	Pr2	Steuerungsband der Gebläse	0.1÷30.0 °C; 0.1÷10.0 bar
ESF	0.0	Pr2	Sollwertverschiebung (Energiesparmodus) der Gebläse	-50.0÷50.0 °C -20.0÷20.0 bar
PbES	0.0	Pr2	Bandverschiebung (Energiesparmodus) der Gebläse	-50.0÷50.0 °C -20.0÷20.0 bar
Fon	30	Pr2	Zeit zwischen Anforderungen verschiedener Gebläse	0÷255 s
FoF	15	Pr2	Zeit zwischen Abwurfen verschiedener Gebläse	0÷255 s
LSF	10.0	Pr2	Minimaler Sollwert der Gebläse	-50.0÷HSF °C; FA04÷HSF bar
HSF	50.0	Pr2	Maximaler Sollwert der Gebläse	LSF÷150.0 °C; LSF÷FA20 bar
PAO	30	Pr2	Verzögerung der Fühleralarme nach der Einschaltung	0÷255 min
LAL	-40.0	Pr1	Tiefalarm am Verdampfer Kältekreislauf 1	-50.0÷HAL °C; PA04÷HAL bar
HAL	10.0	Pr1	Hochalarm am Verdampfer Kältekreislauf 1	LAL÷150.0 °C; LAL÷PA20 bar
tAo	15	Pr1	Alarmverzögerung am Verdampfer Kältekreislauf 1	0÷255 min
ELP	-45.0	Pr2	Elektronischer Niederdruckschalter Kältekreislauf 1	-50.0÷STC1 °C PA04÷STC1 bar
2LAL	-50.0	Pr2	Tiefalarm am Verdampfer Kältekreislauf 2	-50.0÷2HAL °C; 3PA4÷2HAL bar

Name	Ab Werk	Ebene	Beschreibung	Bereich
2HAL	20.0	Pr2	Hochalarm am Verdampfer Kältekreislauf 2	2LAL÷150.0 °C;
			•	2LAL÷3P20 bar
2tAo	100	Pr2	Alarmverzögerung am Verdampfer Kältekreislauf 2	0÷255 min -50.0÷STC2 °C
2ELP	-50.0	Pr2	Elektronischer Niederdruckschalter Kältekreislauf 2	3P04÷STC2 bar
SEr	999	Pr2	Betriebsstundenbegrenzung (0 = Funktion aus)	1÷999 hr (Auflösung 10 Stunden)
PEn	5	Pr2	Maximale Auslösungen ND-Schalter Kältekreislauf 1	0÷15
PEI	60	Pr2	Überwachungszeitraum ND-Schalter Kältekreislauf 1	0÷255 min
SPr	1	Pr2	Angeforderte Verdichter beim Fühlerfehler Kältekreislauf 1	0÷6
2PEn	5	Pr2	Maximale Auslösungen ND-Schalter Kältekreislauf 1	0÷15
2PEI	60	Pr2	Überwachungszeitraum ND-Schalter Kältekreislauf 1	0÷255 min
2SPr	1	Pr2	Angeforderte Verdichter beim Fühlerfehler Kältekreislauf 1	0÷6
PoPr	50	Pr2	Angeforderte Leistung beim Fühlerfehler (Verdichter verschiedener Leistungen)	0÷100 %
LAF	0.0	Pr1	Tiefalarm am Verflüssiger	-50.0÷HAF °C; FA04÷HAF bar
HAF	60.0	Pr1	Hochalarm am Verflüssiger	LAF÷150.0 °C; LAF÷FA20 bar
AFd	5	Pr2	Alarmverzögerung am Verflüssiger	0÷255 min
HFc	YES	Pr2	Verdichterabschaltung beim Hochalarm am Verflüssiger (Verdichterentladung)	no – yES
dHF	5	Pr2	Zet zwischen zwei Verdichterabschaltungen wegen des Hochalarmes am Verflüssiger	0÷255 s
PnF	5	Pr2	Maximale Auslösungen Hochdruckschalter	0 ÷15
PiF	60	Pr2	Überwachungszeitraum Hochdruckschalter	0÷255 min
FPr	1	Pr2	Angeforderte Gebläse beim Fühlerfehler	0÷6
dSEP	nΡ	Pr2	Fühler des dynamischen Verflüssigungssollwertes	nP – P3 - P4
dSES	35.0	Pr2	Sollwert der Außentemperatur	-50.0÷150.0 °C
dSEb	10.0	Pr2	Steuerungsband der Außentemperatur	-50.0÷50.0 °C
dSEd	0.0	Pr2	Maximale Verschiebung des Verflüssigungssollwertes	-50.0÷50.0 °C -20.0÷20.0 bar
AOC	Cur	Pr2	Signaltyp Analogausgang 1 (4÷20 mA oder 0÷10 V)	Cur – tEn
AOF	nu	Pr2	Funktion Analogausgang 1	nu – InC1 – InC2 – InF
InCP	no	Pr2	Analogausgang 1 als FU-Verdichter wird immer als erste Last verwendet	no – yES
AOM	0	Pr2	Minimaler Ausgangswert Analogausgang 1	0÷100 %
AOt	5	Pr2	Zeit mit dem Analogausgang 1 auf 100% am Anfang der Steuerung (um die Anlaufträgheit zu Überwinden)	0÷15 s
MPM	100	Pr2	Maximale Änderung pro Minute Analogausgang 1 (nu = Funktion aus)	nu, 1÷100 %
SAO	80	Pr2	Ausgangswert beim Fühlerfehler Analogausgang 1	0÷100 %
АОН	70	Pr2	Maximaler Ausgangswert beim Leisemodus Analogausgang 1	0÷100 %
2AOC	Cur	Pr2	Signaltyp Analogausgang 2 (4÷20 mA oder 0÷10 V)	Cur – tEn
2AOF	nu	Pr2	Funktion Analogausgang 2	nu – InC1 – InC2 – InF
2AOM	0	Pr2	Minimaler Ausgangswert Analogausgang 2	0÷100 %
2AOt	5	Pr2	Zeit mit dem Analogausgang 2 auf 100% am Anfang der Steuerung (um die Anlaufträgheit zu Überwinden)	0÷15 s
2MPM	100	Pr2	Maximale Änderung pro Minute Analogausgang 2 (nu = Funktion aus)	nu, 1÷100 %
2SAO	80	Pr2	Ausgangswert beim Fühlerfehler Analogausgang 2	0÷100 %
2AOH	70	Pr2	Maximaler Ausgangswert beim Leisemodus Analogausgang 2	0÷100 %
_				

Name	Ab Werk	Ebene	Beschreibung	Bereich
tbA	YES	Pr1	Quittierung des Alarmrelais über die Tastatur	no - yES
OAP	cL	Pr2	Polarität des Alarmrelais	OP - CL
oFF	no	Pr2	OFF-Modus (Steuerung aus) aktivierbar	no - yES
bUr	YES	Pr2	Alarmsummer aktivierbar	no - yES
Adr	1	Pr2	Serielle Adresse (ModBus-Protokoll)	1÷247
rEL	3.0	Pr2	Softwareversion	Nur lesbar
Ptb	-	Pr2	Version der Werkseinstellungen	Nur lesbar
Pr2	-	Pr1	Verknüpfung zur zweiten Parameterebene	Nur lesbar

COOL ITALIA GmbH Dixell Deutschland

Schmidener Weg 13 70736 Fellbach +49 (0)711 658830 www.coolitalia.de

Dixell S.r.l. - 32010 Pieve d'Alpago (BL) ITALY - Z.I. Via dell'Industria, 27 Tel. +39.0437.9833 r.a. - Fax +39.0437.989313 - www.dixell.com - dixell@emerson.com